Skip to main content

Advertisement

Log in

Preparation and Characterization of Honokiol Nanosuspensions and Preliminary Evaluation of Anti-Inflammatory Effect

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The study mainly aimed to improve the solubility of honokiol (HK) by preparing honokiol nanosuspensions (HNS). In this study, HNS were obtained using Kolliphor®P407 (P407) as a stabilizer through melting method combined with high pressure homogenization (HPH). The crystalline state of HNS was confirmed through differential scanning calorimetry (DSC) and X-ray Diffraction (XRD). In vitro, the dissolution rate of HNS was significantly improved than that of pure HK. In vivo, higher anti-inflammatory activity was achieved after free HK had been made into HNS. There was no significant difference between the degree of edema (DE) of HNS group and that of aspirin group. Consequently, melting method combined with HPH was a potent technique to prepare HNS. Furthermore, nanosuspension was a valid formulation that could be utilized to enhance the anti-inflammatory effect of HK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fujita M, Itokawa H, Sashida Y. Honokiol, a new phenolic compound isolated from the bark of Magnolia obovata Thunb. Chem Pharm Bull. 1972;20:212–3.

    Article  CAS  Google Scholar 

  2. Huang DB, Yu ZF. Effects of honokiol and magnolol on beta-endorphin in relieving morphine withdrawal symptoms in rats. Chin J Clin Rehabil. 2005;2(9):831–2.

    Google Scholar 

  3. Liou KT, Shen YC, Chen CF, Tsao CM, Tsai SK. The anti-inflammatory effect of honokiol on neutrophils: mechanisms in the inhibition of reactive oxygen species production. Eur J Pharmacol. 2003;475(1):19–27.

    Article  CAS  Google Scholar 

  4. Kuribara H, Stavinoha WB, Maruyama Y. Behavioural pharmacological characteristics of honokiol, an anxiolytic agent present in extracts of Magnolia bark, evaluated by an elevated plus-maze test in mice. J Pharm Pharmacol. 2011;50(7):819–26.

    Article  Google Scholar 

  5. Shen J-L, Man K-M, Huang P-H, Chen W-C, Chen D-C, Cheng Y-W, et al. Honokiol and magnolol as multifunctional antioxidative molecules for dermatologic disorders. Molecules. 2010;15(9):6452–65.

    Article  CAS  Google Scholar 

  6. Rauf A, Patel S, Imran M, Maalik A, Arshad MU, Saeed F, et al. Honokiol: an anticancer lignan. Biomed Pharmacother. 2018;107:555–62.

    Article  CAS  Google Scholar 

  7. Jongsung L, Eunsun J, Junho P, Kwangseon J, Sangyeop L, Sungtaek H, et al. Anti-inflammatory effects of magnolol and honokiol are mediated through inhibition of the downstream pathway of MEKK-1 in NF-kappaB activation signaling. Planta Med. 2005;71(04):338–43.

    Article  Google Scholar 

  8. Guo Y, Zhao Y, Wang T, Shuang Z, Qiu H, Han M, et al. Honokiol nanoparticles stabilized by oligoethylene glycols codendrimer: in vitro and in vivo investigation. J Mater Chem B. 2016;5(4):697–706.

    Article  Google Scholar 

  9. Wang N, Wang Z, Nie S, Song L, He T, Yang S, et al. Biodegradable polymeric micelles coencapsulating paclitaxel and honokiol: a strategy for breast cancer therapy in vitro and in vivo. Int J Nanomedicine. 2017;12:1499–514.

    Article  CAS  Google Scholar 

  10. Han M, Yu X, Guo Y, Wang Y, Kuang H, Wang X. Honokiol nanosuspensions: preparation, increased oral bioavailability and dramatically enhanced biodistribution in the cardio-cerebrovascular system. Colloids Surf B: Biointerfaces. 2014;116(2):114–20.

    Article  CAS  Google Scholar 

  11. Jiang Q, Fan L, Yang G, Guo WH, Hou W, Chen L, et al. Improved therapeutic effectiveness by combining liposomal honokiol with cisplatin in lung cancer model. BMC Cancer. 2008;8(1):242.

    Article  Google Scholar 

  12. Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res. 2008;10(5):845–62.

    Article  CAS  Google Scholar 

  13. Müller RH, Gohla S, Keckacd CM. State of the art of nanocrystals – special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011;78(1):1–9.

    Article  Google Scholar 

  14. Junghanns JUAH, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3(3):295–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lai F, Pini E, Corrias F, Perricci J, Manconi M, Fadda AM, et al. Formulation strategy and evaluation of nanocrystal piroxicam orally disintegrating tablets manufacturing by freeze -drying. Int J Pharm. 2014;467(1–2):27–33.

    Article  CAS  Google Scholar 

  16. Lin Z, Gao W, Hu H, Ma K, He B, Dai W, et al. Novel thermo-sensitive hydrogel system with paclitaxel nanocrystals: high drug-loading, sustained drug release and extended local retention guaranteeing better efficacy and lower toxicity. J Control Release. 2014;174(1):161–70.

    Article  CAS  Google Scholar 

  17. Möschwitzer J, Müller RH. Spray coated pellets as carrier system for mucoadhesive drug nanocrystals. Eur J Pharm Biopharm. 2006;62(3):282–7.

    Article  Google Scholar 

  18. Chan HK, Kwok PCL. Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev. 2011;63(6):406–16.

    Article  CAS  Google Scholar 

  19. Biswadip S, Müller RH, MöSchwitzer JP. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm. 2013;453(1):126–41.

    Article  Google Scholar 

  20. Elaine M-L, Gary GL, Eugene RC. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18(2):113–20.

    Article  Google Scholar 

  21. Chin WWL, Johannes P, Michael W, En Hui T, Rajeev G. A brief literature and patent review of nanosuspensions to a final drug product. J Pharm Sci. 2015;103(10):2980–99.

    Article  Google Scholar 

  22. Federica L, Roberta C. Drug nanosuspensions: a ZIP tool between traditional and innovative pharmaceutical formulations. Expert Opin Drug Deliv. 2015;12(10):1607–25.

    Article  Google Scholar 

  23. Ji Y, Zhou X, Guo R, Nie F, Wang X. Honokiol nanosuspensions: preparation, in vitro and in vivo evaluation. Acta Pharm Sin. 2018;29(1):133–40.

    Google Scholar 

  24. Zheng H, Yu X, Li Z. Preparation of honokiol nanoparticles with high drug-loading and their premilinary antitumor efficacy. Drug Eval Res. 2015;38(3):292–6.

    Google Scholar 

  25. Wu W, Wang L, Wang L, Zu Y, Wang S, Liu P, et al. Preparation of honokiol nanoparticles by liquid antisolvent precipitation technique, characterization, pharmacokinetics, and evaluation of inhibitory effect on HepG2 cells. Int J Nanomedicine. 2018;13:5469–83.

    Article  CAS  Google Scholar 

  26. Wang Z, Li X, Wang D, Zou Y, Qu X, He C, et al. Concurrently suppressing multidrug resistance and metastasis of breast cancer by co-delivery of paclitaxel and honokiol with pH-sensitive polymeric micelles. Acta Biomater. 2017;62(15):144–56.

    Article  CAS  Google Scholar 

  27. Deng F, Hu W, Chen H, Tang Y, Zhang L. Development of a chitosan-based nanoparticle formulation for ophthalmic delivery of honokiol. Current Drug Delivery. 2018;15(4):594–600.

    Article  CAS  Google Scholar 

  28. Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47(1):3–19.

    Article  Google Scholar 

  29. Teeranachaideekul V, Junyaprasert VB, Souto EB, Müller RH. Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology. Int J Pharm. 2008;354(1):227–34.

    Article  CAS  Google Scholar 

  30. Wenju WU. NANCOLLAS, G. H. a new understanding of the relationship between solubility and particle size. J Solut Chem. 1998;27(6):521–31.

    Article  Google Scholar 

  31. Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19(12):930–4.

    Article  Google Scholar 

  32. Kumawat R, Sharma S, Vasudeva N, Kumar S. In vivo anti-inflammatory potential of various extracts of Sida tiagii Bhandari. Asian Pac J Trop Biomed. 2012;2(2):S947–S52.

    Article  Google Scholar 

  33. Sowemimo A, Samuel F, Fageyinbo MS. Anti-inflammatory activity of Markhamia tomentosa (Benth.) K. Schum. Ex Engl. ethanolic leaf extract. J Ethnopharmacol. 2013;149(1):191–4.

    Article  Google Scholar 

  34. Levy G, Giacomini KM. Rational aspirin dosage regimens. Clin Pharmacol Ther. 1978;23(3):247–52.

  35. Bernstein BH, Singsen BH, King KK, Hanson V. Aspirin-induced hepatotoxicity and its effect on juvenile rheumatoid arthritis. Am J Dis Child. 1960;131(6):659–63.

  36. Byung Hun K, Jae YC. Anti-inflammatory effect of honokiol is mediated by PI3K/Akt pathway suppression 1. Acta Pharmacol Sin. 2010;29(1):113–22.

    Google Scholar 

  37. Li J, Shao X, Wu L, Feng T, Jin C, Fang M, et al. Honokiol: an effective inhibitor of tumor necrosis factor-α-induced up-regulation of inflammatory cytokine and chemokine production in human synovial fibroblasts. Acta Biochim Biophys Sin. 2011;43(5):380–6.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (81673830), six talent peaks project of Jiangsu Province (YY053), Major Project and Double first -class innovative team (CPU2018GY28), and National Science and Technology Major Project (2017zx09101001005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenhai Zhang or Huixia Lv.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Lu, X., Zhang, Z. et al. Preparation and Characterization of Honokiol Nanosuspensions and Preliminary Evaluation of Anti-Inflammatory Effect. AAPS PharmSciTech 21, 62 (2020). https://doi.org/10.1208/s12249-019-1602-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1602-x

KEY WORDS

Navigation