Skip to main content

Advertisement

Log in

Amazonia Products in Novel Lipid Nanoparticles for Fucoxanthin Encapsulation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Lipid nanoparticles (LNs) are traditional systems able to effectively increase skin hydration. However, due to its reduced viscosity, LNs suspensions are less attractive for skin administration. To overcome this disadvantage, the LN were incorporated in the semi-solid formulation is easy manipulation. This study demonstrated that it is possible to obtain novel LN-loaded fucoxanthin (LN-FUCO) for topical administration containing a combination of bacuri butter and tucumã oil prepared by high shear homogenization for improved stability. The particle size was found to be 243.0 nm and the entrapment efficiency up to 98% of FUCO was incorporated and achieved the suitability of formula. The LN-FUCO hydrogel characteristics of slight acidity, drug content near 100%, and nanometric mean size assure to this formulation high compatibility to dermal application. Photostability assay by UVA, LN-FUCO, and LN-FUCO hydrogel improved photostability and conferred greater protection against FUCO degradation. The results obtained from in vitro skin permeation studies presented a significant difference between LN-FUCO hydrogel and FUCO (p < 0.05), with no detection of the drug in the receptor medium. Therefore, high shear homogenization is demonstrated to be a simple, available, and effective method to prepare high-quality LN-FUCO hydrogel for topical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Morais L, Gutjahr E. Química de oleaginosas valorização da biodiversidade amazônica. Brasília DF: GTZ - Agência de Cooperação Técnica Alemã; 2009.

    Google Scholar 

  2. Rufino M d S, Alves RE, De Brito ES, Pérez-Jiménez J, Saura-Calixto F, Mancini-Filho J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010;121:996–1002.

    Article  CAS  Google Scholar 

  3. Silva AP, Carlos J, Filho CLS, Da Costa Júnior JS, Peláez WJ, Faillace MS, et al. Toxicological study employing repeated doses of garcinielliptone FC, a polyisoprenylated-benzophenone isolated from seed of Platonia Insignis Mart. J Pharm Pharmacol. 2015;3:316–30.

    Google Scholar 

  4. Uekane TM, Nicolotti L, Griglione A, Bizzo HR, Rubiolo P, Bicchi C, et al. Studies on the volatile fraction composition of three native Amazonian-Brazilian fruits: Murici ( Byrsonima crassifolia L., Malpighiaceae), bacuri ( Platonia insignis M., Clusiaceae), and sapodilla ( Manilkara sapota L., Sapotaceae). Food Chem. 2017;219:13–22.

    Article  CAS  Google Scholar 

  5. Bora PS, Narain N, Rocha RVM, De Oliveira Monteiro AC, De Azevedo Moreira R. Characterisation of the oil and protein fractions of Tucuma (Astrocaryum Vulgare Mart.) fruit pulp and seed kernel. Cienc y Tecnol Aliment. Taylor & Francis Group; 2001;3:111–6.

  6. de Rosso VV, Mercadante AZ. Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. J Agric Food Chem. 2007;55:5062–72.

    Article  Google Scholar 

  7. Miyashita K, Nishikawa S, Beppu F, Tsukui T, Abe M, Hosokawa M. The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds. J Sci Food Agric. 2011;91:1166–74.

    Article  CAS  Google Scholar 

  8. Kumar SR, Hosokawa M, Miyashita K. Fucoxanthin: a marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Mar Drugs. Multidisciplinary Digital Publishing Institute (MDPI); 2013;11:5130–47.

  9. Shimoda H, Tanaka J, Shan S-J, Maoka T. Anti-pigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. J Pharm Pharmacol. 2010;62:1137–45.

    Article  CAS  Google Scholar 

  10. Heo S-J, Jeon Y-J. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J Photochem Photobiol B Biol. 2009;95:101–7.

    Article  CAS  Google Scholar 

  11. Hii S-L, Choong P-Y, Woo K-K, Wong C-L. Stability studies of fucoxanthin from Sargassum binderi. Aust J Basic Appl Sci. 2010;4:4580–4.

    CAS  Google Scholar 

  12. Crupi P, Toci AT, Mangini S, Wrubl F, Rodolfi L, Tredici MR, et al. Determination of fucoxanthin isomers in microalgae ( Isochrysis sp.) by high-performance liquid chromatography coupled with diode-array detector multistage mass spectrometry coupled with positive electrospray ionization. Rapid Commun Mass Spectrom. 2013;27:1027–35.

    Article  CAS  Google Scholar 

  13. Shidhaye SS, Vaidya R, Sutar S, Patwardhan A, Kadam VJ. Solid lipid nanoparticles and nanostructured lipid carriers--innovative generations of solid lipid carriers. Curr Drug Deliv. 2008;5:324–31.

    Article  CAS  Google Scholar 

  14. Kumar S, Randhawa JK. High melting lipid based approach for drug delivery: solid lipid nanoparticles. Mater Sci Eng C. 2013;33:1842–52.

    Article  CAS  Google Scholar 

  15. Wissing SA, Müller RH. Cosmetic applications for solid lipid nanoparticles (SLN). Int J Pharm. 2003;254:65–8.

    Article  CAS  Google Scholar 

  16. Souto EB, Almeida AJ, Müller RH. Lipid nanoparticles (SLN®, NLC®) for cutaneous drug delivery: structure, protection and skin effects. J Biomed Nanotechnol. 2007;3:317–31.

    Article  CAS  Google Scholar 

  17. Salvia-Trujillo L, Sun Q, Um BH, Park Y, McClements DJ. In vitro and in vivo study of fucoxanthin bioavailability from nanoemulsion-based delivery systems: impact of lipid carrier type. J Funct Foods. 2015;17:293–304.

    Article  CAS  Google Scholar 

  18. Ravi H, Baskaran V. Biodegradable chitosan-glycolipid hybrid nanogels: a novel approach to encapsulate fucoxanthin for improved stability and bioavailability. Food Hydrocoll. 2015;43:717–25.

    Article  CAS  Google Scholar 

  19. Quan J, Kim S-M, Pan C-H, Chung D. Characterization of fucoxanthin-loaded microspheres composed of cetyl palmitate-based solid lipid core and fish gelatin–gum arabic coacervate shell. Food Res Int, Elsevier. 2013;50:31–7.

    Article  CAS  Google Scholar 

  20. Bhattacharjee S. DLS and zeta potencial - what they are and what they are not? J Control Release. 2016;235:337–51.

    Article  CAS  Google Scholar 

  21. Cordenonsi LM, Santer A, Martins Sponchiado R, Steppe M, Raffin RP, Schapoval EES. Characterization and analysis of Fucoxanthin and its isomers. J Pharm Sci Biosci Res. 2017;7:322–34.

    Google Scholar 

  22. Alnasif N, Zoschke C, Fleige E, Brodwolf R, Boreham A, Rühl E, et al. Penetration of normal, damaged and diseased skin — an in vitro study on dendritic core–multishell nanotransporters. J Control Release. 2014;185:45–50.

    Article  CAS  Google Scholar 

  23. ICH. International Conference on Harmonisation - Validation of analytical procedures: text and methodology Q2(R1). 2005.

  24. Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47:165–96.

    Article  CAS  Google Scholar 

  25. Gasco MR. Lipid nanoparticles: perspectives and challenges. Adv Drug Deliv Rev. 2007;59:377–8.

    Article  CAS  Google Scholar 

  26. Cordenonsi LM, Faccendini A, Catanzaro M, Bonferoni MC, Rossi S, Malavasi L, et al. The role of chitosan as coating material for nanostructured lipid carriers for skin delivery of fucoxanthin. Int J Pharm. 2019;567:118487.

    Article  Google Scholar 

  27. Puglia C, Blasi P, Rizza L, Schoubben A, Bonina F, Rossi C, et al. Lipid nanoparticles for prolonged topical delivery: an in vitro and in vivo investigation. Int J Pharm. 2008;357:295–304.

    Article  CAS  Google Scholar 

  28. Muthu MS, Singh S. Studies on biodegradable polymeric nanoparticles of risperidone: in vitro and in vivo evaluation. Nanomedicine. 2008;3:305–19.

    Article  CAS  Google Scholar 

  29. Freitas C, Müller RH. Stability determination of solid lipid nanoparticles (SLN TM) in aqueous dispersion after addition of electrolyte. J Microencapsul. 1999;16:59–71.

    Article  CAS  Google Scholar 

  30. Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54(Suppl 1):S131–55.

    Article  Google Scholar 

  31. Schmid-Wendtner M-H, Korting HC. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol. 2006;19:296–302.

    Article  Google Scholar 

  32. Rambla-Alegre M, Esteve-Romero J, Carda-Broch S. Is it really necessary to validate an analytical method or not? That is the question. J Chromatogr A. 2012;1232:101–9.

    Article  CAS  Google Scholar 

  33. Raza K, Katare OP, Setia A, Bhatia A, Singh B. Improved therapeutic performance of dithranol against psoriasis employing systematically optimized nanoemulsomes. J Microencapsul. 2013;30:225–36.

    Article  CAS  Google Scholar 

  34. Selim K, Tsimidou M, Biliaderis C. Kinetic studies of degradation of saffron carotenoids encapsulated in amorphous polymer matrices. Food Chem. 2000;71:199–206.

    Article  CAS  Google Scholar 

  35. Souto E, Wissing S, Barbosa C, Müller R. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm. 2004;278:71–7.

    Article  CAS  Google Scholar 

  36. Andrade LM, de Fátima RC, Maione-Silva L, Anjos JLV, Alonso A, Serpa RC, et al. Impact of lipid dynamic behavior on physical stability, in vitro release and skin permeation of genistein-loaded lipid nanoparticles. Eur J Pharm Biopharm. 2014;88:40–7.

    Article  CAS  Google Scholar 

  37. Wallace SJ, Li J, Nation RL, Boyd BJ. Drug release from nanomedicines: selection of appropriate encapsulation and release methodology. Drug Deliv Transl Res. 2012;2:284–92.

    Article  CAS  Google Scholar 

  38. Shen J, Burgess DJ. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: recent developments and challenges. Drug Deliv Transl Res. 2013;3:409–15.

    Article  CAS  Google Scholar 

  39. Fernandez C, Marti-Mestres G, Ramos J, Maillols H. LC analysis of benzophenone-3: II application to determination of “in vitro” and “in vivo” skin penetration from solvents, coarse and submicron emulsions. J Pharm Biomed Anal. 2000;24:155–65.

    Article  CAS  Google Scholar 

  40. Jenning V, Gysler A, Schäfer-Korting M, Gohla SH. Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm. 2000;49:211–8.

    Article  CAS  Google Scholar 

  41. Jensen LB, Petersson K, Nielsen HM. In vitro penetration properties of solid lipid nanoparticles in intact and barrier-impaired skin. Eur J Pharm Biopharm. 2011;79:68–75.

    Article  CAS  Google Scholar 

  42. Saija A, Tomaino A, Trombetta D, Giacchi M, De Pasquale A, Bonina F. Influence of different penetration enhancers on in vitro skin permeation and in vivo photoprotective effect of flavonoids. Int J Pharm. 1998.

  43. Sinha B, Müller RH, Möschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm. 2013;453:126–41.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia Malgarim Cordenonsi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordenonsi, L.M., Santer, A., Sponchiado, R.M. et al. Amazonia Products in Novel Lipid Nanoparticles for Fucoxanthin Encapsulation. AAPS PharmSciTech 21, 32 (2020). https://doi.org/10.1208/s12249-019-1601-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1601-y

KEY WORDS

Navigation