Skip to main content

Advertisement

Log in

Mechanistic Insights of Formulation Approaches for the Treatment of Nail Infection: Conventional and Novel Drug Delivery Approaches

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Onychomycosis is a chronic disorder that is difficult to manage and hard to eradicate with perilous trends to relapse. Due to increased prevalence of HIV, use of immunosuppressant drugs and lifestyle-related factors, population affected with fungal infection of nail (Onychomycosis) happens to increase extensively in last two decades. Modalities available for the treatment of onychomycosis include systemically administered antifungals, mechanical procedures, and topical drug therapy. But the efficacy of the most of approaches to deliver drug at targeted site, i.e., deep-seated infected nail bed is limited due to compact and highly keratinized nail structure. A series of advanced formulation approaches, such as transfersomes, liposomes, nano/micro emulsion, nail lacquers etc., have been attempted to improve the drug penetration into nail plate more efficiently. The manuscript reviews these formulation approaches with their possible mechanisms by which they improve the drug penetration.Comparative analysis of available treatment modalities for onychomycosis has been provided with pros and cons of each alternatives. Additionally, ongoing research about the application of biological materials such as modified cationic antimicrobial peptides (AMPs), plant-derived proteins, and synthetic antimicrobial peptidomimetics have also been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Murdan S. Drug delivery to the nail following topical application. Int J Pharm. 2002;236(1–2):1–26.

    CAS  PubMed  Google Scholar 

  2. Hossain MA, Ghannoum MA. New developments in chemotherapy for non-invasive fungal infections. Expert Opin Investig Drugs. 2001;10(8):1501–11.

    CAS  PubMed  Google Scholar 

  3. Gupta AK, Jain HC, Lynde CW, MacDonald P, Cooper EA, Summerbell RC. Prevalence and epidemiology of onychomycosis in patients visiting physicians’ offices: a multicenter Canadian survey of 15,000 patients. J Am Acad Dermatol. 2000;43(2):244–8.

    CAS  PubMed  Google Scholar 

  4. Ahmadi B, Hashemi SJ, Zaini F, Shidfar MR, Moazeni M, Mousavi B, et al. A case of onychomycosis caused by Aspergillus candidus. Medical mycology case reports. 2012;1(1):45–8.

    PubMed  PubMed Central  Google Scholar 

  5. Tiwary AK, Sapra B. High failure rate of transungal drug delivery: need for new strategies. Ther Deliv. 2017;8(5):239–42.

  6. Zaias N. Onychomycosis. Dermatol Clin. 1985;3(3):445–60.

    CAS  PubMed  Google Scholar 

  7. Baran R, Hay R, Tosti A, Haneke E. A new classification of onychomycosis. Br J Dermatol. 1998;139(4):567–71.

    CAS  PubMed  Google Scholar 

  8. Baran R. Proximal subungual candida onychomycosis. An unusual manifestation of chronic muco-cutaneous candidosis. Br J Dermatol. 1997;137(2):286–8.

    CAS  PubMed  Google Scholar 

  9. Baran R, Tosti A, Piraccini B. Uncommon clinical patterns of Fusarium nail infection: report of three cases. Br J Dermatol. 1997;136(3):424–7.

    CAS  PubMed  Google Scholar 

  10. Tosti A, Piraccini B, Stinchi C, Lorenzi S. Onychomycosis due to Scopulariopsis brevicaulis: clinical features and response to systemic antifungals. Br J Dermatol. 1996;135(5):799–802.

    CAS  PubMed  Google Scholar 

  11. Hay R, Baran R, Moore M, Wilkinson J. Candida onychomycosis—an evaluation of the role of Candida species in nail disease. Br J Dermatol. 1988;118(1):47–58.

    CAS  PubMed  Google Scholar 

  12. Gupta AK, Simpson FC. New therapeutic options for onychomycosis. Expert Opin Pharmacother. 2012;13(8):1131–42.

    CAS  PubMed  Google Scholar 

  13. Krishnan-Natesan S. Terbinafine: a pharmacological and clinical review. Expert Opin Pharmacother. 2009;10(16):2723–33.

    CAS  PubMed  Google Scholar 

  14. Ghannoum MA, Long L, Pfister WR. Determination of the efficacy of terbinafine hydrochloride nail solution in the topical treatment of dermatophytosis in a Guinea pig model. Mycoses. 2009;52(1):35–43.

    PubMed  Google Scholar 

  15. Girmenia C. New generation azole antifungals in clinical investigation. Expert Opin Investig Drugs. 2009;18(9):1279–95.

    CAS  PubMed  Google Scholar 

  16. Baker SJ, Zhang Y-K, Akama T, Lau A, Zhou H, Hernandez V, et al. Discovery of a new boron-containing antifungal agent, 5-fluoro-1, 3-dihydro-1-hydroxy-2, 1-benzoxaborole (AN2690), for the potential treatment of onychomycosis. J Med Chem. 2006;49(15):4447–50.

    CAS  PubMed  Google Scholar 

  17. Gupta AK, Studholme C. Novel investigational therapies for onychomycosis: an update. Expert Opin Investig Drugs. 2016;25(3):297–305.

    CAS  PubMed  Google Scholar 

  18. Hui X, Baker SJ, Wester RC, Barbadillo S, Cashmore AK, Sanders V, et al. In vitro penetration of a novel oxaborole antifungal (AN2690) into the human nail plate. J Pharm Sci. 2007;96(10):2622–31.

    CAS  PubMed  Google Scholar 

  19. Beutner K, Toledo-Bahena M, Barbosa-Alanis H, Reyes-Santana E, Mata-Lara MG, Santillán ALL-T, et al. Interim results of a multi-center study to evaluate the safety and efficacy of topically applied AN2690 5.0% and 7.5% solutions for the treatment of onychomycosis of the great toe nail. J Am Acad Dermatol. 2007;56(2).

  20. Jinna S, Finch J. Spotlight on tavaborole for the treatment of onychomycosis. Drug design, development and therapy. 2015;9:6185.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rock FL, Mao W, Yaremchuk A, Tukalo M, Crépin T, Zhou H, et al. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science. 2007;316(5832):1759–61.

    CAS  PubMed  Google Scholar 

  22. Gupta AK, Simpson FC. New pharmacotherapy for the treatment of onychomycosis: an update. Expert Opin Pharmacother. 2015;16(2):227–36.

    CAS  PubMed  Google Scholar 

  23. Scher R, Baran R. Onychomycosis in clinical practice: factors contributing to recurrence. Br J Dermatol. 2003;149:5–9.

    PubMed  Google Scholar 

  24. Arrese JE, Piérard GE. Treatment failures and relapses in onychomycosis: a stubborn clinical problem. Dermatology. 2003;207(3):255–60.

    PubMed  Google Scholar 

  25. Shivakumar H, Juluri A, Desai B, Murthy SN. Ungual and transungual drug delivery. Drug Dev Ind Pharm. 2012;38(8):901–11.

    CAS  PubMed  Google Scholar 

  26. Fonzo D. L.I.ON. Study: efficacy and tolerability of continuous terbinafine (Lamisil®) compared to intermittent itraconazole in the treatment of toenail onychomycosis. Br J Dermatol. 1999;141:5–14.

    PubMed  Google Scholar 

  27. Sigurgeirsson B, Ólafsson JH, Steinsson J, Paul C, Billstein S, EGV E. Long-term effectiveness of treatment with terbinafine vs itraconazole in onychomycosis: a 5-year blinded prospective follow-up study. Arch Dermatol. 2002;138(3):353–7.

    CAS  PubMed  Google Scholar 

  28. Villars V, Jones T. Special features of the clinical use of oral terbinafine in the treatment of fungal diseases. Br J Dermatol. 1992;126:61–9.

    PubMed  Google Scholar 

  29. Tosti A, Piraccini B, Stinchi C, Colombo M. Relapses of onychomycosis after successful treatment with systemic antifungals: a three-year follow-up. Dermatology. 1998;197(2):162–6.

    CAS  PubMed  Google Scholar 

  30. Baran RMaibach H. Textbook of cosmetic dermatology. London Crossref: Informa Healthcare; 2010.

    Google Scholar 

  31. Piraccini BM, Rech G, Tosti A. Photodynamic therapy of onychomycosis caused by Trichophyton rubrum. J Am Acad Dermatol. 2008;59(5):S75–S6.

    PubMed  Google Scholar 

  32. Nair AB, Kim HD, Chakraborty B, Singh J, Zaman M, Gupta A, et al. Ungual and trans-ungual iontophoretic delivery of terbinafine for the treatment of onychomycosis. J Pharm Sci. 2009;98(11):4130–40.

    CAS  PubMed  Google Scholar 

  33. Boker A, Bea YS, Gowrishankar TR, Ciocon D, Kimball AB. A double-blind, placebo-controlled, pilot study of 1% terbinafine cream delivered via toenail microconduits for the treatment of subungual onychomycosis. Poster presented at the 65th annual meeting of the American Academy of Dermatology, Washington, DC; 2007.

  34. Ciocon D, Gowrishankar T, Herndon T, Kimball AB. How low should you go: novel device for nail trephination. Dermatol Surg. 2006;32(6):828–33.

    CAS  PubMed  Google Scholar 

  35. Murdan S. Enhancing the nail permeability of topically applied drugs. Expert opinion on drug delivery. 2008;5(11):1267–82.

    CAS  PubMed  Google Scholar 

  36. Mohorčič M, Torkar A, Friedrich J, Kristl J, Murdan S. An investigation into keratinolytic enzymes to enhance ungual drug delivery. Int J Pharm. 2007;332(1–2):196–201.

    PubMed  Google Scholar 

  37. Miron D, Cornelio R, Troleis J, Mariath J, Zimmer A, Mayorga P, et al. Influence of penetration enhancers and molecular weight in antifungals permeation through bovine hoof membranes and prediction of efficacy in human nails. Eur J Pharm Sci. 2014;51:20–5.

    CAS  PubMed  Google Scholar 

  38. Amichai B, Mosckovitz R, Trau H, Sholto O, Ben-Yaakov S, Royz M, et al. Iontophoretic terbinafine HCL 1.0% delivery across porcine and human nails. Mycopathologia. 2010;169(5):343–9.

    CAS  PubMed  Google Scholar 

  39. Monti D, Egiziano E, Burgalassi S, Tampucci S, Terreni E, Tivegna S, et al. Influence of a combination of chemical enhancers and Iontophoresis on in vitro Transungual permeation of Nystatin. AAPS PharmSciTech. 2018;19(4):1574–81.

    CAS  PubMed  Google Scholar 

  40. Nair AB, Singh K, Shinu P, Harsha S, Al-Dhubiab BE. A comprehensive study to evaluate the effect of constant low voltage iontophoresis on transungual delivery. Drug Dev Ind Pharm. 2013;39(5):807–15.

    CAS  PubMed  Google Scholar 

  41. Vanstone S, Cordery SF, Stone JM, Gordeev SN, Guy RH. Precise laser poration to control drug delivery into and through human nail. J Control Release. 2017;268:72–7.

    CAS  PubMed  Google Scholar 

  42. Salter SA, Ciocon DH, Gowrishankar TR, Kimball AB. Controlled nail trephination for subungual hematoma. Am J Emerg Med. 2006;24(7):875–7.

    PubMed  Google Scholar 

  43. Gupta AK, FRCP. Ciclopirox: an overview. Int J Dermatol. 2001;40(5):305–10.

    CAS  PubMed  Google Scholar 

  44. Gupta AK, Plott T. Ciclopirox: a broad-spectrum antifungal with antibacterial and anti-inflammatory properties. Int J Dermatol. 2004;43(S1):3–8.

    CAS  PubMed  Google Scholar 

  45. Polak A. Mode of action of morpholine derivatives. Ann N Y Acad Sci. 1988;544(1):221–8.

    CAS  PubMed  Google Scholar 

  46. Alley MR, Baker SJ, Beutner KR, Plattner J. Recent progress on the topical therapy of onychomycosis. Expert Opin Investig Drugs. 2007;16(2):157–67.

    CAS  PubMed  Google Scholar 

  47. Thatai P, Sapra B. Transungual delivery: deliberations and creeds. Int J Cosmet Sci. 2014;36(5):398–411.

    CAS  PubMed  Google Scholar 

  48. Kobayashi Y, Miyamoto M, Sugibayashi K, Morimoto Y. Drug permeation through the three layers of the human nail plate. J Pharm Pharmacol. 1999;51(3):271–8.

    CAS  PubMed  Google Scholar 

  49. Walters KA, Flynn GL, Marvel JR. Physicochemical characterization of the human nail: permeation pattern for water and the homologous alcohols and differences with respect to the stratum corneum. J Pharm Pharmacol. 1983;35(1):28–33.

    CAS  PubMed  Google Scholar 

  50. Walters K, Flynn G. Permeability characteristics of the human nail plate. Int J Cosmet Sci. 1983;5(6):231–46.

    CAS  PubMed  Google Scholar 

  51. Garson J, Baltenneck F, Leroy F, Riekel C, Müller M. Histological structure of human nail as studied by synchrotron X-ray microdiffraction. Cellular and molecular biology (Noisy-le-Grand, France). 2000;46(6):1025–34.

    CAS  Google Scholar 

  52. Forslind B. Biophysical studies of the normal nail. Acta Derm Venereol. 1970;50(3):161–8.

    CAS  PubMed  Google Scholar 

  53. Vejnovic I, Simmler L, Betz G. Investigation of different formulations for drug delivery through the nail plate. Int J Pharm. 2010;386(1–2):185–94.

    CAS  PubMed  Google Scholar 

  54. Akhtar N, Sharma H, Pathak K. Onychomycosis: potential of nail lacquers in transungual delivery of antifungals. Scientifica. 2016;2016(1387936):12.

  55. Khengar R, Jones S, Turner R, Forbes B, Brown M. Nail swelling as a pre-formulation screen for the selection and optimisation of ungual penetration enhancers. Pharm Res. 2007;24(12):2207–12.

    CAS  PubMed  Google Scholar 

  56. Smith KA, Hao J, Li SK. Effects of organic solvents on the barrier properties of human nail. J Pharm Sci. 2011;100(10):4244–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Monti D, Saccomani L, Chetoni P, Burgalassi S, Saettone M, Mailland F. In vitro transungual permeation of ciclopirox from a hydroxypropyl chitosan-based, water-soluble nail lacquer. Drug Dev Ind Pharm. 2005;31(1):11–7.

    CAS  PubMed  Google Scholar 

  58. Elsayed MM. Development of topical therapeutics for management of onychomycosis and other nail disorders: a pharmaceutical perspective. J Control Release. 2015;199:132–44.

    CAS  PubMed  Google Scholar 

  59. Shivakumar H, Vaka SRK, Madhav NS, Chandra H, Murthy SN. Bilayered nail lacquer of terbinafine hydrochloride for treatment of onychomycosis. J Pharm Sci. 2010;99(10):4267–76.

    CAS  PubMed  Google Scholar 

  60. Thatai P, Sapra B. Terbinafine hydrochloride nail lacquer for the management of onychomycosis: formulation, characterization and in vitro evaluation. Ther Deliv. 2018;9(2):99–119.

    CAS  PubMed  Google Scholar 

  61. Šveikauskaitė I, Briedis V. Effect of film-forming polymers on release of naftifine hydrochloride from nail lacquers. Int J of Poly Sci. 2017;2017(1476270):7.

  62. Cutrín-Gómez E, Anguiano-Igea S, Delgado-Charro M, Gómez-Amoza J, Otero-Espinar F. Effect on nail structure and Transungual permeability of the ethanol and Poloxamer ratio from Cyclodextrin-soluble Polypseudorotaxanes based nail lacquer. Pharmaceutics. 2018;10(3):156.

    PubMed Central  Google Scholar 

  63. Joshi M, Sharma V, Pathak K. Matrix based system of isotretinoin as nail lacquer to enhance transungal delivery across human nail plate. Int J Pharm. 2015;478(1):268–77.

    CAS  PubMed  Google Scholar 

  64. Cutrín-Gómez E, Anguiano-Igea S, Delgado-Charro M, Gómez-Amoza J, Otero-Espinar F. Effect of penetration enhancers on drug nail permeability from Cyclodextrin/Poloxamer-soluble Polypseudorotaxane-based nail lacquers. Pharmaceutics. 2018;10(4):273.

    PubMed Central  Google Scholar 

  65. Thapa RK, Choi JY, Go TG, Kang MH, Han SD, Jun J-H, et al. Development of ciclopirox nail lacquer with enhanced permeation and retention. Arch Pharm Res. 2016;39(7):953–9.

    CAS  PubMed  Google Scholar 

  66. Khattab A, Shalaby S. Optimized Ciclopirox-based Eudragit RLPO nail lacquer: effect of Endopeptidase enzyme as permeation enhancer on Transungual drug delivery and efficiency against Onychomycosis. AAPS PharmSciTech. 2018;19(3):1048–60.

    CAS  PubMed  Google Scholar 

  67. El-sherif NI, Shamma RN, Abdelbary G. In-situ gels and nail lacquers as potential delivery systems for treatment of onychomycosis. A comparative study. Journal of Drug Delivery Science and Technology. 2018;43:253–61.

    CAS  Google Scholar 

  68. Valdes BSG, Serro AP, Gordo PM, Silva A, Gonçalves L, Salgado A, et al. New polyurethane nail lacquers for the delivery of Terbinafine: formulation and antifungal activity evaluation. J Pharm Sci. 2017;106(6):1570–7.

    Google Scholar 

  69. Shah VH, Jobanputra A. Enhanced ungual permeation of terbinafine HCl delivered through liposome-loaded nail lacquer formulation optimized by QbD approach. AAPS PharmSciTech. 2018;19(1):213–24.

    CAS  PubMed  Google Scholar 

  70. Nogueiras-Nieto L, Delgado-Charro MB, Otero-Espinar FJ. Thermogelling hydrogels of cyclodextrin/poloxamer polypseudorotaxanes as aqueous-based nail lacquers: application to the delivery of triamcinolone acetonide and ciclopirox olamine. Eur J Pharm Biopharm. 2013;83(3):370–7.

    CAS  PubMed  Google Scholar 

  71. Hafeez F, Hui X, Chiang A, Hornby S, Maibach H. Transungual delivery of ketoconazole using novel lacquer formulation. Int J Pharm. 2013;456(2):357–61.

    CAS  PubMed  Google Scholar 

  72. Sipponen P, Sipponen A, Lohi J, Soini M, Tapanainen R, Jokinen JJ. Natural coniferous resin lacquer in treatment of toenail onychomycosis: an observational study. Mycoses. 2013;56(3):289–96.

    PubMed  PubMed Central  Google Scholar 

  73. Hassan N, Singh M, Sulaiman S, Jain P, Sharma K, Nandy S, et al. Molecular docking-guided Ungual drug-delivery Design for Amelioration of Onychomycosis. ACS Omega. 2019;4(5):9583–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Thatai P, Kaur K, Sapra B. In-vitro evaluation of Transungual formulation of ketoconazole for the Management of Onychomycosis. Drug Delivery Letters. 2018;8(2):140–52.

    CAS  Google Scholar 

  75. Hui X, Chan TC, Barbadillo S, Lee C, Maibach HI, Wester RC. Enhanced econazole penetration into human nail by 2-n-nonyl-1, 3-dioxolane. J Pharm Sci. 2003;92(1):142–8.

    CAS  PubMed  Google Scholar 

  76. Bhuptani RS, Deshpande KM, Patravale VB. Transungual permeation: current insights. Drug delivery and translational research. 2016;6(4):426–39.

    PubMed  Google Scholar 

  77. Myoung Y, Choi H-K. Permeation of ciclopirox across porcine hoof membrane: effect of pressure sensitive adhesives and vehicles. Eur J Pharm Sci. 2003;20(3):319–25.

    CAS  PubMed  Google Scholar 

  78. Donnelly RF, McCarron PA, Lightowler JM, Woolfson AD. Bioadhesive patch-based delivery of 5-aminolevulinic acid to the nail for photodynamic therapy of onychomycosis. J Control Release. 2005;103(2):381–92.

    CAS  PubMed  Google Scholar 

  79. Mididoddi PK, Repka MA. Characterization of hot-melt extruded drug delivery systems for onychomycosis. Eur J Pharm Biopharm. 2007;66(1):95–105.

    CAS  PubMed  Google Scholar 

  80. Mididoddi P, Prodduturi S, Repka M. Influence of tartaric acid on the bioadhesion and mechanical properties of hot-melt extruded hydroxypropyl cellulose films for the human nail. Drug Dev Ind Pharm. 2006;32(9):1059–66.

    CAS  PubMed  Google Scholar 

  81. Repka MA, Mididoddi PK, Stodghill SP. Influence of human nail etching for the assessment of topical onychomycosis therapies. Int J Pharm. 2004;282(1–2):95–106.

    CAS  PubMed  Google Scholar 

  82. Touitou E. Drug delivery across the skin. Expert Opin Biol Ther. 2002;2(7):723–33.

    CAS  PubMed  Google Scholar 

  83. Ghannoum M, Isham N, Herbert J, Henry W, Yurdakul S. Activity of TDT 067 (terbinafine in Transfersome) against agents of onychomycosis, as determined by minimum inhibitory and fungicidal concentrations. J Clin Microbiol. 2011;49(5):1716–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sigurgeirsson B, Ghannoum M. Therapeutic potential of TDT 067 (terbinafine in Transfersome®): a carrier-based dosage form of terbinafine for onychomycosis. Expert Opin Investig Drugs. 2012;21(10):1549–62.

    CAS  PubMed  Google Scholar 

  85. Naumann S, Meyer J-P, Kiesow A, Mrestani Y, Wohlrab J, Neubert RH. Controlled nail delivery of a novel lipophilic antifungal agent using various modern drug carrier systems as well as in vitro and ex vivo model systems. J Control Release. 2014;180:60–70.

    CAS  PubMed  Google Scholar 

  86. Pannu J, McCarthy A, Martin A, Hamouda T, Ciotti S, Fothergill A, et al. NB-002, a novel nanoemulsion with broad antifungal activity against dermatophytes, other filamentous fungi, and Candida albicans. Antimicrob Agents Chemother. 2009;53(8):3273–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Barot BS, Parejiya PB, Patel HK, Gohel MC, Shelat PK. Microemulsion-based gel of terbinafine for the treatment of onychomycosis: optimization of formulation using D-optimal design. AAPS PharmSciTech. 2012;13(1):184–92.

    CAS  PubMed  Google Scholar 

  88. Mahtab A, Anwar M, Mallick N, Naz Z, Jain GK, Ahmad FJ. Transungual delivery of ketoconazole nanoemulgel for the effective management of onychomycosis. AAPS PharmSciTech. 2016;17(6):1477–90.

    CAS  PubMed  Google Scholar 

  89. Amra K, Momin M. Formulation evaluation of ketoconazole microemulsion-loaded hydrogel with nigella oil as a penetration enhancer. J Cosmet Dermatol. 2019.

  90. Tanrıverdi ST, Özer Ö. Novel topical formulations of Terbinafine-HCl for treatment of onychomycosis. Eur J Pharm Sci. 2013;48(4–5):628–36.

    PubMed  Google Scholar 

  91. Tuncay Tanrıverdi S, Hilmioğlu Polat S, Yeşim Metin D, Kandiloğlu G, Özer Ö. Terbinafine hydrochloride loaded liposome film formulation for treatment of onychomycosis: in vitro and in vivo evaluation. Journal of liposome research. 2016;26(2):163–73.

    Google Scholar 

  92. Dhamoon RK, Popli H, Gupta M. Novel drug delivery strategies for the treatment of Onychomycosis. Pharmaceutical nanotechnology. 2019;7(1):24–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bseiso EA, Nasr M, Sammour OA. Abd El Gawad NA. Novel nail penetration enhancer containing vesicles “nPEVs” for treatment of onychomycosis. Drug delivery. 2016;23(8):2813–9.

    CAS  PubMed  Google Scholar 

  94. Elsherif NI, Shamma RN, Abdelbary G. Terbinafine hydrochloride trans-ungual delivery via nanovesicular systems: in vitro characterization and ex vivo evaluation. AAPS PharmSciTech. 2017;18(2):551–62.

    CAS  PubMed  Google Scholar 

  95. Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55(1):27–55.

    CAS  PubMed  Google Scholar 

  96. Isaksson J, Brandsdal BO, Engqvist M, Flaten GE, Svendsen JSM, Stensen W. A synthetic antimicrobial peptidomimetic (LTX 109): stereochemical impact on membrane disruption. J Med Chem. 2011;54(16):5786–95.

    CAS  PubMed  Google Scholar 

  97. Strøm MB, Haug BE, Skar ML, Stensen W, Stiberg T, Svendsen JS. The pharmacophore of short cationic antibacterial peptides. J Med Chem. 2003;46(9):1567–70.

    PubMed  Google Scholar 

  98. Haug BE, Stensen W, Kalaaji M, Rekdal Ø, Svendsen JS. Synthetic antimicrobial peptidomimetics with therapeutic potential. J Med Chem. 2008;51(14):4306–14.

    CAS  PubMed  Google Scholar 

  99. Stensen W, Turner R, Brown M, Kondori N, Svendsen JS, Svenson J. Short cationic antimicrobial peptides display superior antifungal activities toward candidiasis and Onychomycosis in comparison with Terbinafine and Amorolfine. Mol Pharm. 2016;13(10):3595–600.

    CAS  PubMed  Google Scholar 

  100. Chaudhuri B, Chim MF, Bucks D. Topical formulations for the treatment of nail fungal diseases. Int Patent App. 1999:28.

  101. Quan D, Ruiz A. Nail compositions and methods of administering same. Int Patent App. 2002:28.

  102. Maibach HI, Luo EC, Hsu TM. Topical administration of basic antifungal compositions to treat fungal infections of the nails. U.S. Patent. 2005:13.

  103. Riley L. Topical formulation for treating fingernails and toenails. U.S. Patent. 2007:4.

  104. Kepka SW, Mo YJ, Wang HY, Lu M, Pfister WR, inventors; Google Patents, assignee. Antifungal nail coat and method of use2008.

  105. Chakraborty B, Barsness MS, Goldberg DI, Etheredge RW, Davis SP. Method and system for treating of onychomycosis with an applicator having a gel medicament layer. Int Patent App. 2008:49.

  106. Bailey C. Method and apparatus for improving the appearance of nails affected by onychomycosis through the topical application of highly concentrated or supersaturated boric acid. U.S. Patent App. 2011:10.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agrawal Vikas.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikas, A., Rashmin, P., Mrunali, P. et al. Mechanistic Insights of Formulation Approaches for the Treatment of Nail Infection: Conventional and Novel Drug Delivery Approaches. AAPS PharmSciTech 21, 67 (2020). https://doi.org/10.1208/s12249-019-1591-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1591-9

Key words

Navigation