Skip to main content

Advertisement

Log in

Preparation and Evaluation of Stearylamine-Bearing Pemetrexed Disodium-Loaded Cationic Liposomes In Vitro and In Vivo

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Pemetrexed disodium (PMX) stands out in the treatment of non-small cell lung cancer (NSCLC), but with short half-life and toxic side effects. This study was to design cationic liposomes for targeting delivery PMX to the lungs. The PMX cationic liposome was prepared by thin-film hydration using stearylamine (SA) as the positive component of charge-regulating charge. Then, the PMX cationic liposome (SA-PMX-Lips) was characterized by particle size, morphology, entrapment efficiency (EE), and drug loading (DL). Finally, the drug release behavior in vitro, the pharmacokinetic study, and tissue distribution of SA-PMX-Lips were evaluated separately, with PMX solution (PMX-Sol) and PMX liposome (PMX-Lips) as the control. According to results, SA-PMX-Lips were spherical and the particle size was 219.7 ± 4.97 nm with a narrow polydispersity index (PDI) (0.231 ± 0.024) and a positive zeta potential 22.2 ± 0.52 mV. Its EE was 92.39 ± 1.94% and DL was 9.15 ± 0.07%. The results of in vitro and in vivo experiments showed that SA-PMX-Lips released slowly, prolonged retention time and increased the value of AUC. More notably, SA-PMX-Lips could improve the accumulation of drugs in the lungs and the relative uptake rate (Re) was 2.35 in the lungs, which indicated its lung targeting. In summary, SA-PMX-Lips showed the potential for the effective delivery of PMX and the treatment of NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cai Z, Liu Q. Understanding the global cancer statistics 2018: implications for cancer control. Sci China Life Sci. 2019.

  2. Torre LA, Siegel RL, Jemal A. Lung cancer statistics. Adv Exp Med Biol. 2016;893:1–19.

    PubMed  Google Scholar 

  3. Wakelee H, Kelly K, Edelman MJ. 50 years of progress in the systemic therapy of non-small cell lung cancer. American Society of Clinical Oncology educational book American Society of Clinical Oncology Annual Meeting. 2014:177-89.

  4. Kudinov AE, Deneka A, Nikonova AS, Beck TN, Ahn YH, Liu X, et al. Musashi-2 (MSI2) supports TGF-beta signaling and inhibits claudins to promote non-small cell lung cancer (NSCLC) metastasis. Proc Natl Acad Sci U S A. 2016;113(25):6955–60.

  5. Russo F, Bearz A, Pampaloni G. Investigators of Italian Pemetrexed Monotherapy of NG. Pemetrexed single agent chemotherapy in previously treated patients with locally advanced or metastatic non-small cell lung cancer. BMC Cancer. 2008;8:216.

    PubMed  PubMed Central  Google Scholar 

  6. Hanna N, Shepherd FA, Fossella FV, Pereira JR, De Marinis F, von Pawel J, et al. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol : Off J Am Soc Clin Oncol. 2004;22(9):1589–97.

    CAS  Google Scholar 

  7. Rossi G, Alama A, Genova C, Rijavec E, Tagliamento M, Biello F, et al. The evolving role of pemetrexed disodium for the treatment of non-small cell lung cancer. Expert Opin Pharmacother. 2018;19(17):1969–76.

    CAS  PubMed  Google Scholar 

  8. Cohen MH, Cortazar P, Justice R, Pazdur R. Approval summary: pemetrexed maintenance therapy of advanced/metastatic nonsquamous, non-small cell lung cancer (NSCLC). Oncologist. 2010;15(12):1352–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cohen MH, Johnson JR, Wang YC, Sridhara R, Pazdur R. FDA drug approval summary: pemetrexed for injection (Alimta) for the treatment of non-small cell lung cancer. Oncologist. 2005;10(6):363–8.

    CAS  PubMed  Google Scholar 

  10. Zinner RG, Fossella FV, Gladish GW, Glisson BS, Blumenschein GR Jr, Papadimitrakopoulou VA, et al. Phase II study of pemetrexed in combination with carboplatin in the first-line treatment of advanced nonsmall cell lung cancer. Cancer. 2005;104(11):2449–56.

    CAS  PubMed  Google Scholar 

  11. Gronberg BH, Bremnes RM, Flotten O, Amundsen T, Brunsvig PF, Hjelde HH, et al. Phase III study by the Norwegian Lung Cancer Study Group: pemetrexed plus carboplatin compared with gemcitabine plus carboplatin as first-line chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol: Off J Am Soc Clin Oncol. 2009;27(19):3217–24.

    Google Scholar 

  12. Paz-Ares LG, de Marinis F, Dediu M, Thomas M, Pujol JL, Bidoli P, et al. PARAMOUNT: final overall survival results of the phase III study of maintenance pemetrexed versus placebo immediately after induction treatment with pemetrexed plus cisplatin for advanced nonsquamous non-small-cell lung cancer. J Clin Oncol: Off J Am Soc Clin Oncol. 2013;31(23):2895–902.

  13. Wang Y, Zhao R, Goldman ID. Characterization of a folate transporter in HeLa cells with a low pH optimum and high affinity for pemetrexed distinct from the reduced folate carrier. Clin Cancer Res. 2004;10(18):6256–64.

    CAS  PubMed  Google Scholar 

  14. Zhao R, Chattopadhyay S, Hanscom M, Goldman ID. Antifolate resistance in a HeLa cell line associated with impaired transport independent of the reduced folate carrier. Clin Cancer Res. 2004;10(24):8735–42.

    CAS  PubMed  Google Scholar 

  15. Rollins KD, Lindley C. Pemetrexed: a multitargeted antifolate. Clin Ther. 2005;27(9):1343–82.

    CAS  PubMed  Google Scholar 

  16. Mallick S, Choi JS. Liposomes: versatile and biocompatible nanovesicles for efficient biomolecules delivery. J Nanosci Nanotechnol. 2014;14(1):755–65.

    CAS  PubMed  Google Scholar 

  17. Li ZL, Peng SF, Chen X, Zhu YQ, Zou LQ, Liu W, et al. Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility. Food Res Int. 2018;108:246–53.

  18. Maruyama K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev. 2011;63(3):161–9.

    CAS  PubMed  Google Scholar 

  19. Deshpande P, Jhaveri A, Pattni B, Biswas S, Torchilin V. Transferrin and octaarginine modified dual-functional liposomes with improved cancer cell targeting and enhanced intracellular delivery for the treatment of ovarian cancer. Drug Delivery. 2018;25(1):517–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li X, Ding L, Xu Y, Wang Y, Ping Q. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm. 2009;373(1-2):116–23.

    CAS  PubMed  Google Scholar 

  21. Yuan M, Qiu Y, Zhang L, Gao H, He Q. Targeted delivery of transferrin and TAT co-modified liposomes encapsulating both paclitaxel and doxorubicin for melanoma. Drug Delivery. 2016;23(4):1171–83.

    CAS  PubMed  Google Scholar 

  22. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Aoki H, Tottori T, Sakurai F, Fuji K, Miyajima K. Effects of positive charge density on the liposomal surface on disposition kinetics of liposomes in rats. Int J Pharm. 1997;156(2):163–74.

    CAS  Google Scholar 

  24. Grit M, Crommelin DJ. The effect of surface charge on the hydrolysis kinetics of partially hydrogenated egg phosphatidylcholine and egg phosphatidylglycerol in aqueous liposome dispersions. Biochim et Biophys Acta (BBA)-Lipids Lipid Metab. 1993;1167(1):49–55.

    CAS  Google Scholar 

  25. Kellaway IW, Farr SJ. Liposomes as drug delivery systems to the lung. Adv Drug Deliv Rev. 1990;5(1-2):149–61.

    CAS  Google Scholar 

  26. Tahara K, Kobayashi M, Yoshida S, Onodera R, Inoue N, Takeuchi H. Effects of cationic liposomes with stearylamine against virus infection. Int J Pharm. 2018;543(1-2):311–7.

  27. Yang Z, Liu J, Gao J, Chen S, Huang G. Chitosan coated vancomycin hydrochloride liposomes: characterizations and evaluation. Int J Pharm. 2015;495(1):508–15.

    CAS  PubMed  Google Scholar 

  28. Yang ZL, Tian L, Liu JJ, Huang GH. Construction and evaluation in vitro and in vivo of tedizolid phosphate loaded cationic liposomes. J Liposome Res. 2018;28(4):322–30.

    CAS  PubMed  Google Scholar 

  29. De M, Ghosh S, Sen T, Shadab M, Banerjee I, Basu S, et al. A novel therapeutic strategy for cancer using phosphatidylserine targeting stearylamine-bearing cationic liposomes. Mol Ther Nucleic Acids. 2018;10:9–27.

    CAS  PubMed  Google Scholar 

  30. Yoshihara E, Nakae T. Cytolytic activity of liposomes containing stearylamine. Biochim Biophys Acta. 1986;854(1):93–101.

    CAS  PubMed  Google Scholar 

  31. Nishiya T, Lam RTT, Eng F, Zerey M, Lau S. Mechanistic study on toxicity of positively charged liposomes containing stearylamine to blood. Artif Cell Blood Sub. 1995;23(4):505–12.

    CAS  Google Scholar 

  32. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8.

  33. Tian L, Liu J, Jia Q, Ying Y, Yang Z, Huang G. Preparation and evaluation of artemether liposomes for enhanced anti-tumor therapy. AAPS PharmSciTech. 2018;19(2):512–21.

    CAS  PubMed  Google Scholar 

  34. Wang T, Feng L, Yang S, Liu Y, Zhang N. Ceramide lipid-based nanosuspension for enhanced delivery of docetaxel with synergistic antitumor efficiency. Drug Deliv. 2017;24(1):800–10.

    CAS  PubMed  Google Scholar 

  35. Zhang B, Wang T, Yang S, Xiao Y, Song Y, Zhang N, et al. Development and evaluation of oxaliplatin and irinotecan co-loaded liposomes for enhanced colorectal cancer therapy. J Control Release. 2016;238:10–21.

  36. Ando H, Kobayashi S, Abu Lila AS, Eldin NE, Kato C, Shimizu T, et al. Advanced therapeutic approach for the treatment of malignant pleural mesothelioma via the intrapleural administration of liposomal pemetrexed. J Control Release. 2015;220(Pt A):29–36.

    CAS  PubMed  Google Scholar 

  37. Medina O, Zhu Y, Kairemo K. Targeted liposomal drug delivery in cancer. Curr Pharm Des. 2004;10(24):2981–9.

    CAS  PubMed  Google Scholar 

  38. Yang Y, Cai HX, Yuan XY, Xu HH, Hu YY, Rui X, et al. Efficient targeting drug delivery system for Lewis lung carcinoma, leading to histomorphological abnormalities restoration, physiological and psychological statuses improvement, and metastasis inhibition. Mol Pharm. 2018;15(5):2007–16.

  39. Yamamoto H, Kuno Y, Sugimoto S, Takeuchi H, Kawashima Y. Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J Control Release. 2005;102(2):373–81.

    CAS  PubMed  Google Scholar 

  40. Webb MS, Wheeler JJ, Bally MB, Mayer LD. The cationic lipid stearylamine reduces the permeability of the cationic drugs verapamil and prochlorperazine to lipid bilayers—implications for drug-delivery. BBA-Biomembranes. 1995;1238(2):147-155.

  41. Sharma S, Rajendran V, Kulshreshtha R, Ghosh PC. Enhanced efficacy of anti-miR-191 delivery through stearylamine liposome formulation for the treatment of breast cancer cells. Int J Pharm. 2017;530(1-2):387–400.

    CAS  PubMed  Google Scholar 

  42. Pandita D, Ahuja A, Lather V, Dutta T, Velpandian T, Khar RK. Development, characterization and in vitro assessement of stearylamine-based lipid nanoparticles of paclitaxel. Pharmazie. 2011;66(3):171–7.

    CAS  PubMed  Google Scholar 

  43. Christensen D, Korsholm KS, Andersen P, Agger EM. Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines. 2011;10(4):513–21.

    CAS  PubMed  Google Scholar 

  44. Mishra N, Sharma S, Deshmukh R, Kumar A, Sharma R. Development and characterization of nasal delivery of selegiline hydrochloride loaded nanolipid carriers for the management of Parkinson’s disease. Cent Nerv Syst Agents Med Chem. 2019;19(1):46–56.

    CAS  PubMed  Google Scholar 

  45. Tahara K, Kobayashi M, Yoshida S, Onodera R, Inoue N, Takeuchi H. Effects of cationic liposomes with stearylamine against virus infection. Int J Pharm. 2018;543(1-2):311–7.

    CAS  PubMed  Google Scholar 

  46. Sonoke S, Ueda T, Fujiwara K, Sato Y, Takagaki K, Hirabayashi K, et al. Tumor regression in mice by delivery of Bcl-2 small interfering RNA with PEGylated cationic liposomes. Cancer Res. 2008;68(21):8843–51.

  47. Moghimi SM, Patel HM. Modulation of murine liver macrophage clearance of liposomes by diethylstilbestrol. The effect of vesicle surface charge and a role for the complement receptor Mac-1 (CD11b/CD18) of newly recruited macrophages in liposome recognition. J Control Release. 2002;78(1-3):55–65.

    CAS  PubMed  Google Scholar 

  48. Senior JH. Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst. 1987;3(2):123–93.

    CAS  PubMed  Google Scholar 

  49. Alhariri M, Azghani A, Omri A. Liposomal antibiotics for the treatment of infectious diseases. Expert Opin Drug Deliv. 2013;10(11):1515–32.

    CAS  PubMed  Google Scholar 

  50. Teong B, Kuo SM, Chen CH, Chen YK, Cheng ZJ, Huang HH. Characterization and human osteoblastic proliferation-and differentiation-stimulatory effects of phosphatidylcholine liposomes-encapsulated propranolol hydrochloride. Bio-Med Mater Eng. 2014;24(5):1875–87.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the University of Pharmaceutical Science, Shandong University, for providing facilities. The paper is funded by Major Scientific and Technological Innovation Project of Shandong Province (2918CXGC1411), Shandong Key Research and Development Program(2018GSF121006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Huang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, K., Liu, J., Gao, Y. et al. Preparation and Evaluation of Stearylamine-Bearing Pemetrexed Disodium-Loaded Cationic Liposomes In Vitro and In Vivo. AAPS PharmSciTech 21, 193 (2020). https://doi.org/10.1208/s12249-019-1586-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1586-6

Key Words

Navigation