Skip to main content

Advertisement

Log in

Development of Methotrexate and Minocycline-Loaded Nanoparticles for the Effective Treatment of Rheumatoid Arthritis

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

A Correction to this article was published on 19 February 2020

This article has been updated

Abstract

Rheumatoid arthritis is an autoimmune disease that leads to cartilage destruction, synovial joint inflammation, and bacterial joint/bone infections. In the present work, methotrexate and minocycline-loaded nanoparticles (MMNPs) were developed with an aim to provide relief from inflammation and disease progression/joints stiffness and to control the bacterial infections associated with rheumatoid arthritis. MMNPs were developed and optimized by solvent evaporation along with high-pressure homogenization technique using poly(lactic-co-glycolic acid) (50:50%) copolymer. FTIR spectrometric results showed the compatibility nature of methotrexate, minocycline, and poly(lactic-co-glycolic acid). The MMNPs showed particle size ranging from 125.03 ± 9.82 to 251.5 ± 6.23 nm with charge of around − 6.90 ± 0.8 to − 34.8 ± 4.3 mV. The in vitro release studies showed a sustained release pattern with 75.11% of methotrexate (MTX) release and 49.11% of minocycline hydrochloride (MNC) release at 10 h. The developed MMNPs were found to be stable at refrigerated condition and non-hemolytic nature (< 22.0%). MMNPs showed superior cytotoxicity for studied concentrations (0.1 to 1000 μM) compared with free MTX at both 24 and 48 h treatment period in a dose/time-dependent manner in inflammatory RAW 264.7 cells. Anti-bacterial studies indicate that the efficacy of the developed MMNPs to control infections was compared with pure MNC. In vivo anti-arthritis showed effective arthritis reduction potential of the developed MMNPs upon intravenous administration. This proof of concept implies that MTX with MNC combined nanoparticles may be effective to treat RA associated with severe infections.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. Koenders MI, van den Berg WB. Novel therapeutic targets in rheumatoid arthritis. Trends Pharmacol Sci. 2015;36(4):189–95.

    CAS  PubMed  Google Scholar 

  2. Kahlenberg JM, Fox DA. Advances in the medical treatment of rheumatoid arthritis. Hand Clin. 2011;27(1):11–20.

    PubMed  PubMed Central  Google Scholar 

  3. Sibilia J, Marietta X. Methotrexate treatment and mortality in rheumatoid arthritis. Lancet J. 2002;360(9339):1096–7.

    Google Scholar 

  4. Darley ESR, MacGowan AP. Antibiotic treatment of gram-positive bone and joint infections. J Antimicrob Chemother. 2004;53:928–35.

    CAS  PubMed  Google Scholar 

  5. Cronstein B. How does methotrexate suppress inflammation? Clin Exp Rheumatol. 2010;5(61):S21–3.

    Google Scholar 

  6. Tomescu A, Sirbu R, Paris S, Cadar E, Erimia CL, Tomescu CL. Methotrexate. Therapy in obstetricaĺ diseases. Eur J Interdiscip Stud. 2016;1(4):9–16.

    Google Scholar 

  7. Chan ESL, Cronstein BN. Molecular action of methotrexate in inflammatory diseases. Arthritis Res. 2002;4(4):266–73.

    PubMed  PubMed Central  Google Scholar 

  8. Wessels JA, Huizinga TW, Guchelaar HJ. Recent insights in the pharmacological actions of methotrexate in the treatment of rheumatoid arthritis. Rheumatology. 2008;47(3):249–55.

    CAS  PubMed  Google Scholar 

  9. Sung JY, Hong JH, Kang HS, Choi I, Lim SD, Lee JK, et al. Methotrexate suppresses the interleukin-6 induced generation of reactive oxygen species in the synoviocytes of rheumatoid arthritis. Immunopharmacology. 2000;47(1):35–44.

    CAS  PubMed  Google Scholar 

  10. Prey S, Paul C. Effect of folic or folinic acid supplementation on methotrexate-associated safety and efficacy in inflammatory disease: a systematic review. Br J Dermatol. 2009;160(3):622–8.

    CAS  PubMed  Google Scholar 

  11. Boechat AL, de Oliveira CP, Tarrago AM, da Costa AG, Malheiro A, Guterres SS, et al. Methotrexate-loaded lipid-core nanocapsules are highly effective in the control of inflammation in synovial cells and a chronic arthritis model. Int J Nanomedicine. 2015;10:6603–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Garrido-Mesa N, Zarzuelo A, Galvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol. 2013;169(2):337–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Langevitz P, Bank I, Zemer D, Book M, Pras M. Treatment of resistant rheumatoid arthritis with minocycline: an open study. J Rheumatol. 1992;19(10):1502–14.

    CAS  PubMed  Google Scholar 

  14. O’Dell JR, Blakely KW, Mallek JA, Eckhoff PJ, Leff RD, Wees SJ, et al. Treatment of early seropositive rheumatoid arthritis: a two-year, double-blind comparison of minocycline and hydroxychloroquine. Arthritis Rheum. 2001;44(10):2235–41.

    PubMed  Google Scholar 

  15. Tilley BC, Alarcon GS, Heyse SP, Trentham DE, Neuner R, Kaplan DA, et al. Minocycline in rheumatoid arthritis: a 48-week, double-blind, placebo-controlled trial. Ann Intern Med. 1995;122(2):81–90.

    CAS  PubMed  Google Scholar 

  16. Fagan SC, Waller JL, Nichols FT, Edwards DJ, Pettigrew LC, Clark WM. Minocycline to improve neurologic outcome in stroke (MINOS): a dose-finding study. Stroke. 2010;4(10):2283–97.

    Google Scholar 

  17. Wang Q, Su X. Recent advances in nanomedicines for the treatment of rheumatoid arthritis. Biomater Sci. 2017;5:1407–20.

    CAS  PubMed  Google Scholar 

  18. Chuang SY, Lin CH, Huang TH, Fang JY. Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis. Nanomaterials. 2018;8(1):E42.

    PubMed  Google Scholar 

  19. Prasad LK, O’Mary H, Cui Z. Nanomedicine delivers promising treatments for rheumatoid arthritis. Nanomedicine. 2015;10(13):2063–74.

    CAS  PubMed  Google Scholar 

  20. Zambaux MF, Bonneaux F, Gref R, Dellacherie E, Vigneron C. Preparation and characterization of protein C-loaded PLA nanoparticles. J Control Release. 1999;60(2–3):179–88.

    CAS  PubMed  Google Scholar 

  21. Higaki M, Ishihara T, Izumo N, Takatsu M, Mizushima Y. Treatment of experimental arthritis with poly(d,l-lactic/glycolic acid) nanoparticles encapsulating betamethasone sodium phosphate. Ann Rheum Dis. 2005;64(8):1132–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tahir H, Deodhar A, Genovese M, Takeuchi T, Aelion J, Van den Bosch F, et al. Secukinumab in active rheumatoid arthritis after anti-TNFα therapy: a randomized, double-blind placebo-controlled phase 3 study. Rheumatol Ther. 2017;4(2):475–88.

    PubMed  PubMed Central  Google Scholar 

  23. Kumar V, Bhatt PC, Rahman M, Patel DK, Sethi N. Kumar Melastoma malabathricum Linn attenuates complete freund’s adjuvant induced chronic inflammation in Wistar rats via inflammation response. BMC Complement Altern Med. 2016;16:510.

    PubMed  PubMed Central  Google Scholar 

  24. Dong Y, Feng SS. Poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles prepared by high pressure homogenization for paclitaxel chemotherapy. Int J Pharm. 2007;342(1–2):208–14.

    CAS  PubMed  Google Scholar 

  25. Guo Y, Luo J, Tan S, Otieno BO, Zhang Z. The applications of vitamin E TPGS in drug delivery. Eur J Pharm Sci. 2013;49(2):175–86.

    CAS  PubMed  Google Scholar 

  26. Mohanraj VJ, Chen Y. Nanoparticles—a review. Trop J Pharm Res. 2006;5(1):561–73.

    Google Scholar 

  27. Emami J, Mohiti H, Hamishehkar H, Varshosaz J. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and box-Behnken design. Res Pharm Sci. 2015;10(1):17–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Malik S, Bahal R. Investigation of PLGA nanoparticles in conjunction with nuclear localization sequence for enhanced delivery of antimiR phosphorothioates in cancer cells in vitro. J Nanobiotechnol. 2019;17:57.

    Google Scholar 

  29. Trujillo-Nolasco RM, Morales-Avila E, Ocampo-Garcia BE, Ferro-Flores G, Gibbens-Bandala BV, Escudero-Castellanos A, et al. Preparation and in vitro evaluation of radiolabeled HA-PLGA nanoparticles as novel MTX delivery system for local treatment of rheumatoid arthritis. Mater Sci Eng C. 2019;103:109766.

    CAS  Google Scholar 

  30. Sun SB, Liu P, Shao FM, Miao QL. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int J ClinExp Med. 2015;8(10):19670–81.

    CAS  Google Scholar 

  31. Mahajan NM, Sakarkar DM, Manmode AS. Preparation and characterization of meselamine loaded PLGA nanoparticles. Int J Pharm Pharm Sci. 2011;3(4):208–14.

    Google Scholar 

  32. Kashi TS, Eskandarion S, Esfandyari-Manesh M, Amin SM, Samadi N, Fatemi SM, et al. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method. Int J Nanomedicine. 2012;7:221–34.

    PubMed  PubMed Central  Google Scholar 

  33. Cohen S, Yoshioka T, Lucarelli M, Hwang LH, Langer R. Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharm Res. 1991;8:713–20.

    CAS  PubMed  Google Scholar 

  34. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B. 2010;75:1–18.

    CAS  Google Scholar 

  35. Singh A, Thotakura N, Kumar R, Singh B, Sharma G, Katare OP, et al. PLGA-Soya lecithin based micelles for enhanced delivery of methotrexate: cellular uptake, cytotoxic and pharmacokinetic evidences. Int J Biol Macromol. 2017;95:750–6.

    CAS  PubMed  Google Scholar 

  36. Danhier F, Lecouturier N, Vroman B, Jerome C, Marchand-Brynaert J, Feron O, et al. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release. 2009;133(1):11–7.

    CAS  PubMed  Google Scholar 

  37. Khalil NM, do Nascimento TC, Casa DM, Dalmolin LF, de Mattos AC, Hoss I, et al. Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloids Surf B Biointerfaces. 2013;101:353–60.

    CAS  PubMed  Google Scholar 

  38. Alam MM, Han HS, Sung S, Kang JH, Sa KH, Al Faruque H, et al. Endogenous inspired biomineral-installed hyaluronan nanoparticles as pH-responsive carrier of methotrexate for rheumatoid arthritis. J Control Release. 2017;252:62–72.

    CAS  PubMed  Google Scholar 

  39. Zhao J, Zhao M, Yu C, Zhang X, Liu J, Cheng X, et al. Multifunctional folate receptor-targeting and pH-responsive nanocarriers loaded with methotrexate for treatment of rheumatoid arthritis. Int J Nanomedicine. 2017;12:6735–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dhanka M, Shetty C, Srivastava R. Injectable methotrexate loaded polycaprolactone microspheres: physicochemical characterization, biocompatibility, and hemocompatibility evaluation. Mater Sci Eng C. 2017;81:542–50.

    CAS  Google Scholar 

  41. Zhang S, Wu L, Cao J, Wang K, Ge Y, Ma W, et al. Effect of magnetic nanoparticles size on rheumatoid arthritis targeting and photothermal therapy. Colloids Surf B: Biointerfaces. 2018;170:224–32.

    CAS  PubMed  Google Scholar 

  42. Karthikeyan S, Prasad NR, Ganamani A, Balamurugan E. Anticancer activity of resveratrol loaded gelatin nanoparticles on NCI-H460 non-small cell lung cancer cells. Biomed PrevNutr. 2013;3(1):64–73.

    Google Scholar 

  43. Kumar N, Salar RK, Prasad M, Ranjan K. Synthesis, characterization and anticancer activity of vincristine loaded folic acid-chitosan conjugated nanoparticles on NCI-H460 non-small cell lung cancer cell line. EJBAS. 2018;5(1):87–99.

    Google Scholar 

  44. Pang Z, Wang G, Ran N, Lin H, Wang Z, Guan X, et al. Inhibitory effect of methotrexate on rheumatoid arthritis inflammation and comprehensive metabolomics analysis using ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UPLC-Q/TOF-MS). Int J Mol Sci. 2018;19(10):2894.

    PubMed Central  Google Scholar 

  45. Feng N, Yang M, Feng X, Wang Y, Chang F, Ding J. Reduction-responsive polypeptide nanogel for intracellular drug delivery in relieving collagen-induced arthritis. ACS Biomater Sci Eng. 2018;4(12):4154–62.

    CAS  PubMed  Google Scholar 

  46. Guerra AD, Rose WE, Hematti P, Kao WJ. Minocycline modulates NFκB phosphorylation and enhances antimicrobial activity against Staphylococcus aureus inmesenchymal stromal/stem cells. Stem Cell Res Ther. 2017;8(1):171.

    PubMed  PubMed Central  Google Scholar 

  47. Tekeoglu I, Gurol G, Harman H, Karakece E, Ciftci IH. Overlooked hematological markers of disease activity in rheumatoid arthritis. Int J Rheum Dis. 2016;19(11):1078–82.

    PubMed  Google Scholar 

  48. Gasparyan AY, Ayvazyan L, Mikhailidis DP, Kitas GD. Mean platelet volume: a link between thrombosis and inflammation? Curr Pharm Des. 2011;17:47–58.

    CAS  PubMed  Google Scholar 

  49. Yu C, Li X, Hou Y, Meng X, Wang D, Liu J, et al. Hyaluronic acid coated acid-sensitive nanoparticles for targeted therapy of adjuvant-induced arthritis in rats. Molecules. 2019;24:146.

    PubMed Central  Google Scholar 

  50. Sohc C, Lee A, Qiao Y. Prolonged TNF primes fibroblast-like synoviocytes in a gene-specific manner by altering chromatin. Arthritis Rheum. 2015;67:86–95.

    Google Scholar 

  51. Kumar J, Venkateshwaran K, Vaidevi S, Vijaya R, Ruckmani K. Development of methotrexate-loaded cubosomes with improved skin permeation for the topical treatment of rheumatoid arthritis. Appl Nanosci 2019;1–9.

  52. Kumar V, Leekha A, Tyagi A, Kaul A, Mishra AK, Verma AK. Preparation and evaluation of biopolymeric nanoparticles as drug delivery system in effective treatment of rheumatoid arthritis. Pharm Res. 2017;34(3):654–67.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support received from the Department of Science and Technology (DST) (GoI), New Delhi, the National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries (NFDD) (Ref No. VI- D&P/349/10-11/TDT/1 Dt: 21.10.2010), and DST, New Delhi supported National Facility for Bioactive Peptides from Milk (NFBP) Project (Ref No. VI-D&P/545/2016-17/TDT; Dt: 28.02.2017). The authors gratefully acknowledge DSC instrumentation facility acquired through Defence Research and Development Organization supported project (Ref No. ERIP/ER/1403185/M/01 /1627 Dt: 29.07.2016). The financial support (Senior Research Fellowship) received from the Indian Council of Medical Research, New Delhi (Ref No. 45/21/2018/NAN/BMS. Dt.05.06.2018) is gratefully acknowledged by one of the authors, Mr. J. Kumar.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vijaya Rajendran or Ruckmani Kandasamy.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Typesetting error occurred and author corrections to the numbering of figures and captions at the proofing stage were not incorporated in the published article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janakiraman, K., Krishnaswami, V., Sethuraman, V. et al. Development of Methotrexate and Minocycline-Loaded Nanoparticles for the Effective Treatment of Rheumatoid Arthritis. AAPS PharmSciTech 21, 34 (2020). https://doi.org/10.1208/s12249-019-1581-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1581-y

KEY WORDS

Navigation