Skip to main content

Advertisement

Log in

Synthesis, Characterization, and Drug Delivery Application of Self-assembling Amphiphilic Cyclodextrin

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The main aim of the research was to synthesize amphiphilic cyclodextrin (AMCD) by substituting C12 alkyl chain to a β-cyclodextrin (βCD) in a single step and to study its self-assembly in an aqueous medium. The drug delivery application of the AMCD was also evaluated by encapsulating tamoxifen citrate as a model hydrophobic drug. AMCD was able to self-assemble in aqueous media, forming nanovesicles of size < 200 nm, capable of encapsulating tamoxifen citrate (TMX). Molecular docking and MD simulation studies revealed the interaction between TMX and AMCD which formed a stable complex. TEM and AFM studies showed that nanovesicles were perfectly spherical having a smooth surface and a theoretical AMCD bilayer thickness of ~ 7.2 nm as observed from SANS studies. XRD and DSC studies revealed that TMX was amorphized and molecularly dispersed in AMCD bilayer which was released slowly following Fickian diffusion. AMCD has excellent hemocompatibility as opposed to βCD and no genotoxicity. IC50 of TMX against MCF-7 cell lines was significantly reduced from 11.43 to 7.96 μg/ml after encapsulation in nanovesicle because of nanovesicles being endocytosed by the MCF-7 cells. AMCD was well tolerated by IV route at a dose of > 2000 mg/kg in rats. Pharmacokinetic profile of TMX after encapsulation was improved giving 3-fold higher AUC; extended mean residence time is improving chances of nanovesicle to extravasate in tumor via EPR effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

13C NMR:

carbon-13 nuclear magnetic resonance

1H NMR:

proton nuclear magnetic resonance

AFM :

atomic force microscopy

AMCD:

amphiphilic cyclodextrin

ATCC:

American type culture collection

CD:

Cyclodextrin

CO2 :

carbon dioxide

DCM:

dichloromethane

DLS:

dynamic light scattering

DMEM:

Dulbecco’s modified Eagle medium

DMF:

N,N-dimethylformamide

DMSO:

dimethyl sulfoxide

DMSO-D6 :

deuterated dimethyl sulfoxide

Ds:

degree of substitution

DSC:

differential scanning calorimetry

FBS:

fetal bovine serum

FNV:

fluorescein-loaded AMCD nanovesicles

FTIR:

Fourier-transform infrared spectroscopy

HPLC:

high-performance liquid chromatography

HSQC:

heteronuclear single quantum correlation

IC50 :

half maximal inhibitory concentration

IV:

intravenous

KBr:

potassium bromide

LD50 :

median lethal dose

MALDI-TOF:

matrix-assisted laser desorption/ionization-time-of-flight

MTT:

[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]

MβCD:

methyl beta cyclodextrin

PBS:

phosphate buffer saline

PES:

polyether sulfone

PLGA:

poly(lactic-co-glycolic acid)

PM:

physical mixture

R.T.:

room temperature

RBC:

red blood cells

SANS:

small-angle neutron scattering

SMEDDS:

self-micro emulsifying drug delivery system

TEA:

triethylamine

TEM:

transmission electron microscopy

TLC:

thin-layer chromatography

TMX:

tamoxifen citrate

UV:

ultraviolet

βCD:

beta cyclodextrin

References

  1. De Jong WH, Borm PJA. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine [Internet]. 2008 [cited 2019 Jun 23];3(2):133–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18686775. Accessed 23 June 2019.

  2. Rahman Z, Charoo NA, Akhter S, Beg S, Reddy IK, Khan MA. Nanotechnology-based drug products. In: Nanoscale fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology [Internet]. Elsevier; 2018. p. 619–55. Available from: https://doi.org/10.1016/B978-0-12-813629-4.00016-4.

  3. Ochekpe N, Olorunfemi P, Ngwuluka N. Nanotechnology and drug delivery part 2: nanostructures for drug delivery. Trop J Pharm Res [Internet]. 2009;8(3):275–87 Available from: http://www.ajol.info/index.php/tjpr/article/view/44547.

    CAS  Google Scholar 

  4. Rana V, Sharma R. Recent advances in development of nano drug delivery [Internet]. Applications of targeted nano drugs and delivery systems. Elsevier Inc.; 2019. 93–131 p. Available from: https://doi.org/10.1016/B978-0-12-814029-1.00005-3.

  5. Loftsson T, Hreinsdóttir D, Másson M. Evaluation of cyclodextrin solubilization of drugs. Int J Pharm [Internet]. 2005;302(1–2):18–28 Available from: http://www.ajol.info/index.php/tjpr/article/view/44547.

    Article  CAS  Google Scholar 

  6. Tayade P, Vavia P. Inclusion complexes of ketoprofen with β-cyclodextrins: oral pharmacokinetics of ketoprofen in human. Indian J Pharm Sci [Internet]. 2006;68(2):164 Available from: http://www.ijpsonline.com/text.asp?2006/68/2/164/25709.

    Article  CAS  Google Scholar 

  7. Loftsson T, Jarho P, Másson M, Järvinen T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv [Internet]. 2005;2(2):335–51 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X98000519.

    Article  CAS  Google Scholar 

  8. Loftsson T, Brewster ME, Masson M. Role of cyclodextrins in improving oral drug delivery. Am J Drug Deliv [Internet]. 2004;2(4):261–75 Available from: http://link.springer.com/10.2165/00137696-200402040-00006.

    Article  CAS  Google Scholar 

  9. Fateminasab F, Bordbar AK, Shityakov S. Detailed chemical characterization and molecular modeling of serotonin inclusion complex with unmodified β-cyclodextrin. Heliyon [Internet]. 2019;5(4):e01405. https://doi.org/10.1016/j.heliyon.2019.e01405.

    Article  CAS  PubMed Central  Google Scholar 

  10. Cavalli R, Trotta F, Tumiatti W. Cyclodextrin-based nanosponges for drug delivery. J Incl Phenom Macrocycl Chem [Internet]. 2006;56(1–2):209–13 Available from: http://link.springer.com/10.1007/s10847-006-9085-2.

    Article  CAS  Google Scholar 

  11. Swaminathan S, Pastero L, Serpe L, Trotta F, Vavia P, Aquilano D, et al. Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm [Internet]. 2010 [cited 2013 May 29];74(2):193–201. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19900544. Accessed 29 May 2013.

  12. Ansari K A, Vavia PR, Trotta F, Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech [Internet]. 2011 Mar [cited 2013 Jun 22];12(1):279–86. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3066340&tool=pmcentrez&rendertype=abstract. Accessed 22 June 2013.

  13. Dora CP, Trotta F, Kushwah V, Devasari N, Singh C, Suresh S, et al. Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohydr Polym [Internet]. 2016 [cited 2016 Feb 11];137:339–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26686138. Accessed 11 Feb 2016.

  14. Torne S, Darandale S, Vavia P, Trotta F, Cavalli R. Cyclodextrin-based nanosponges: effective nanocarrier for tamoxifen delivery. Pharm Dev Technol [Internet]. 2013;18(3):619–25 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22235935.

    Article  CAS  Google Scholar 

  15. Bilensoy E, Hincal AA. Recent advances and future directions in amphiphilic cyclodextrin nanoparticles. Expert Opin Drug Deliv [Internet]. 2009;6(11):1161–73 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19705965.

    Article  CAS  Google Scholar 

  16. Jabbari A, Sadeghian H. Amphiphilic cyclodextrins, synthesis , utilities and application of molecular modeling in their design. Recent Adv Nov Drug Carr Syst 2012;331–54.

  17. Roux M, Perly B, Djedaïni-Pilard F. Self-assemblies of amphiphilic cyclodextrins. Eur Biophys J. 2007;36(8):861–7.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang P, Chang-Chun L, Coleman AW, Parrot-Lopez H, Galons H. Formation of amphiphilic cyclodextrins via hydrophobic esterification at the secondary hydroxyl face. Tetrahedron Lett. 1991;32(24):2769–70.

    Article  CAS  Google Scholar 

  19. Godínez LA, Lin J, Muñoz M, Coleman AW, Rubin S, Parikh A, et al. Multilayer self-assembly of amphiphilic cyclodextrin hosts on bare and modified gold substrates: controlling aggregation via surface modification. Lang Int. 1998;14(1):137–44 Available from: http://pubs.acs.org/doi/abs/10.1021/la970749w.

    Article  Google Scholar 

  20. Lemos-Senna E, Wouessidjewe D, Lesieur S, Puisieux F, Couarraze G, Duchêne D, et al. Evaluation of the hydrophobic drug loading characteristics in nanoprecipitated amphiphilic cyclodextrin nanospheres. Pharm Dev Technol. 1998;3(1):85–94.

    Article  CAS  PubMed  Google Scholar 

  21. Lemos-Senna E, Wouessidjewe D, Lesieur S, Duchêne D, Duchene D. Preparation of amphiphilic cyclodextrin nanospheres using the emulsification solvent evaporation method. Influence of the surfactant on preparation and hydrophobic drug loading. Int J Pharm. 1998;170(1):119–28.

    Article  CAS  Google Scholar 

  22. Choisnard L, Gèze A, Putaux J-L, Wong Y-S, Wouessidjewe D. Nanoparticles of beta-cyclodextrin esters obtained by self-assembling of biotransesterified beta-cyclodextrins. Biomacromolecules[Internet]. 2006;7(2):515–20 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16471924.

    Article  CAS  Google Scholar 

  23. Dayrit FM. Lauric acid is a medium-chain fatty acid, coconut oil is a medium-chain triglyceride. Philipp J Sci. 2014;143(2):157–66.

    Google Scholar 

  24. Szejtli J. Limits of cyclodextrin application in oral drug preparations. J Incl Phenom [Internet]. 1984;2(3–4):487–501 Available from: http://link.springer.com/10.1007/BF00662215.

    Article  CAS  Google Scholar 

  25. Maji R, Dey NS, Satapathy BS, Mukherjee B, Mondal S. Preparation and characterization of tamoxifen citrate loaded nanoparticles for breast cancer therapy. Int J Nanomedicine. 2015;9(1):3107–18.

    Google Scholar 

  26. Fontana G, Maniscalco L, Schillaci D, Cavallaro G, Giammona G. Solid lipid nanoparticles containing tamoxifen characterization and in vitro antitumoral activity. Drug Deliv [Internet]. 2005;12(6):385–92 Available from: http://www.tandfonline.com/doi/full/10.1080/10717540590968855.

    Article  CAS  Google Scholar 

  27. Monteagudo E, Gándola Y, González L, Bregni C, Carlucci AM. Development, characterization, and in vitro evaluation of tamoxifen microemulsions. J Drug Deliv [Internet]. 2012;2012:236713 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3261494&tool=pmcentrez&rendertype=abstract.

    CAS  Google Scholar 

  28. Layek B, Mukherjee B. Tamoxifen citrate encapsulated sustained release liposomes: preparation and evaluation of physicochemical properties. Sci Pharm [Internet]. 2010 [cited 2018 Jan 13];78(3):507–15. Available from: https://doi.org/10.3797/scipharm.0911-11

  29. Patel M, Hirlekar R, Mayank P, Rajashree H, Patel M, Hirlekar R. Multicomponent cyclodextrin system for improvement of solubility and dissolution rate of poorly water soluble drug. Asian J Pharm Sci [Internet]. 2019 [cited 2018 Apr 4];14(1):104–15. Available from: https://www.sciencedirect.com/science/article/pii/S1818087617307006?via%3Dihub. Accessed 22 Jan 2019.

  30. Fernández-Luna VG, Mallinson D, Alexiou P, Khadra I, Mullen AB, Pelecanou M, et al. Isatin thiosemicarbazones promote honeycomb structure formation in spin-coated polymer films: concentration effect and release studies. RSC Adv [Internet]. 2017;7(21):12945–52 Available from: http://xlink.rsc.org/?DOI=C6RA28163J. Accessed 09 Jan 2018.

  31. Singla P, Singh O, Chabba S, Aswal VK, Mahajan RK. Sodium deoxycholate mediated enhanced solubilization and stability of hydrophobic drug Clozapine in pluronic micelles. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2018;191:143–54 Available from: http://linkinghub.elsevier.com/retrieve/pii/S1386142517308144.

    Article  CAS  Google Scholar 

  32. Chen H, Gao J, Wang F, Liang W. Preparation, characterization and pharmacokinetics of liposomes-encapsulated cyclodextrins inclusion complexes for hydrophobic drugs. Drug Deliv [Internet]. 2007 [cited 2018 Jan 13];14(4):201–8. Available from: http://www.tandfonline.com/doi/full/10.1080/10717540601036880. Accessed 13 Jan 2018.

  33. Dehghani F, Farhadian N, Golmohammadzadeh S, Biriaee A, Ebrahimi M, Karimi M. Preparation, characterization and in-vivo evaluation of microemulsions containing tamoxifen citrate anti-cancer drug. Eur J Pharm Sci [Internet]. 2017;96:479–89. Available from:. https://doi.org/10.1016/j.ejps.2016.09.033.

    Article  CAS  Google Scholar 

  34. Pawar S, Vavia P. Glucosamine anchored cancer targeted nano-vesicular drug delivery system of doxorubicin. J Drug Target [Internet]. 2016 [cited 2017 Oct 21];24(1):68–79. Available from: https://www.tandfonline.com/doi/full/10.3109/1061186X.2015.1055572. Accessed 21 Nov 2017.

  35. Bilensoy E, Gürkaynak O, Doğan AL, Hincal AA. Safety and efficacy of amphiphilic beta-cyclodextrin nanoparticles for paclitaxel delivery. Int J Pharm [Internet]. 2008;347(1–2):163–70 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17689901.

    Article  CAS  Google Scholar 

  36. Tabei Y, Sonoda A, Nakajima Y, Biju V, Makita Y, Yoshida Y, et al. Intracellular accumulation of indium ions released from nanoparticles induces oxidative stress, proinflammatory response and DNA damage. J Biochem. 2015;159(2):225–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Monpara J, Kanthou C, Tozer GM, Vavia PR. Rational design of cholesterol derivative for improved stability of paclitaxel cationic liposomes. Pharm Res [Internet]. 2018;35(4):90 Available from: http://link.springer.com/10.1007/s11095-018-2367-8.

    Article  CAS  Google Scholar 

  38. Wongpinyochit T, Uhlmann P, Urquhart AJ, Seib FP. PEGylated silk nanoparticles for anticancer drug delivery. Biomacromolecules. 2015;16(11):3712–22.

    Article  CAS  PubMed  Google Scholar 

  39. Patel K, Doddapaneni R, Sekar V, Chowdhury N, Singh M. Combination approach of YSA peptide anchored docetaxel stealth liposomes with oral antifibrotic agent for the treatment of lung Cancer. Mol Pharm. 2016;13(6):2049–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma DX, Shi NQ, Qi XR. Distinct transduction modes of arginine-rich cell-penetrating peptides for cargo delivery into tumor cells. Int J Pharm [Internet]. 2011;419(1–2):200–8. Available from:. https://doi.org/10.1016/j.ijpharm.2011.08.001.

    Article  CAS  Google Scholar 

  41. Kojic LD, Joshi B, Lajoie P, Le PU, Cox ME, Turbin DA, et al. Raft-dependent endocytosis of autocrine motility factor is phosphatidylinositol 3-kinase-dependent in breast carcinoma cells. J Biol Chem [Internet]. 2007;282(40):29305–13 Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M704069200.

    Article  CAS  Google Scholar 

  42. Harivardhan Reddy L, Vivek K, Bakshi N, Murthy RSR. Tamoxifen citrate loaded solid lipid nanoparticles (SLN™): preparation, characterization, in vitro drug release, and pharmacokinetic evaluation. Pharm Dev Technol [Internet]. 2006;11(2):167–77 Available from: http://www.tandfonline.com/doi/full/10.1080/10837450600561265. Accessed 10 May 2017.

  43. Memişoğlu E, Bochot A, Şen M, Charon D, Duchêne D, Hıncal AA. Amphiphilic β-cyclodextrins modified on the primary face: synthesis, characterization, and evaluation of their potential as novel excipients in the preparation of nanocapsules. J Pharm Sci [Internet]. 2002;91(5):1214–24 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022354916309935.

    Article  Google Scholar 

  44. Chen S-H, Lin T-L. Colloidal solutions. In 1987. p. 489–543.

  45. Bilensoy E, Gürkaynak O, Ertan M, Şen M, Hıncal AA. Development of nonsurfactant cyclodextrin nanoparticles loaded with anticancer drug paclitaxel. J Pharm Sci [Internet]. 2008;97(4):1519–29 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022354916325333.

    Article  CAS  Google Scholar 

  46. Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm Res. 2010;67(3):217–23.

    CAS  Google Scholar 

  47. Karpinich NO, Tafani M, Rothman RJ, Russo MA, Farber JL. The course of etoposide-induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. J Biol Chem. 2002;277(19):16547–52.

    Article  CAS  PubMed  Google Scholar 

  48. Quaglia F, Ostacolo L, Mazzaglia A, Villari V, Zaccaria D, Sciortino MT. The intracellular effects of non-ionic amphiphilic cyclodextrin nanoparticles in the delivery of anticancer drugs. Biomaterials [Internet]. 2009 [cited 2017 May 5];30(3):374–82. Available from: https://doi.org/10.1016/j.biomaterials.2008.09.035

  49. Olive PL, Banáth JP. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc. 2006;1(1):23–9.

    Article  CAS  PubMed  Google Scholar 

  50. Van Cuong N, Li YL, Hsieh MF. Targeted delivery of doxorubicin to human breast cancers by folate-decorated star-shaped PEG-PCL micelle. J Mater Chem. 2012;22(3):1006–20.

    Article  CAS  Google Scholar 

  51. Li YL, Van Cuong N, Hsieh MF. Endocytosis pathways of the folate tethered star-shaped PEG-PCL micelles in cancer cell lines. Polymers (Basel). 2014;6(3):634–50.

    Article  CAS  Google Scholar 

  52. Sridhar A, Jithan AV, Malla RV. Comparative pharmacokinetics of free and liposome-encapsulated catechin after intravenous and intraperitoneal administration. Int J Pharm Sci Nanotechnol. 2008;1(2):152–9.

    CAS  Google Scholar 

  53. Sherje AP, Kulkarni V, Murahari M, Nayak UY, Bhat P, Suvarna V, et al. Inclusion complexation of etodolac with hydroxypropyl-beta-cyclodextrin and auxiliary agents: Formulation characterization and molecular modeling studies. Mol Pharm [Internet]. 2017 [cited 2018 Jan 18];14(4):1231–42. Available from: http://pubs.acs.org/doi/10.1021/acs.molpharmaceut.6b01115. Accessed 18 Jan 2018.

  54. Olusanya T, Haj Ahmad R, Ibegbu D, Smith J, Elkordy A, Olusanya TOB, et al. Liposomal drug delivery systems and anticancer drugs. Molecules [Internet]. 2018 [cited 2019 Jul 15];23(4):907. Available from: http://www.mdpi.com/1420-3049/23/4/907. Accessed 15 July 2019.

  55. Nieh M-P, Glinka CJ, Krueger S, Prosser RS, Katsaras J. SANS study of the structural phases of magnetically alignable lanthanide-doped phospholipid mixtures. Lang Int. 2001;17(9):2629–38 Available from: http://pubs.acs.org/doi/abs/10.1021/la001567w.

    Article  CAS  Google Scholar 

  56. Yue B, Huang C-YY, Nieh M-PP, Glinka CJ, Katsaras J. Highly stable phospholipid unilamellar vesicles from spontaneous vesiculation: a DLS and SANS study. J Phys Chem B [Internet]. 2005;109(1):609–16 Available from: http://pubs.acs.org/doi/abs/10.1021/jp047510q.

    Article  CAS  Google Scholar 

  57. Çirpanli Y, Bilensoy E, Lale Doğan A, Çaliş S. Comparative evaluation of polymeric and amphiphilic cyclodextrin nanoparticles for effective camptothecin delivery. Eur J Pharm Biopharm [Internet]. 2009;73(1):82–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19442723.

    Article  CAS  Google Scholar 

  58. Jodál I, Nánási P, Szejtli J. Investigation of the hemolytic effect of the cyclodextrin derivatives. In: Proceedings of the fourth international symposium on cyclodextrins. Dordrecht: Springer Netherlands; 1988. p. 421–5.

    Chapter  Google Scholar 

  59. Ünal H, Öztürk N, Bilensoy E. Formulation development, stability and anticancer efficacy of core-shell cyclodextrin nanocapsules for oral chemotherapy with camptothecin. Beilstein J Org Chem [Internet]. 2015 4 [cited 2016 Feb 11];11(5 mL):204–12. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4362320&tool=pmcentrez&rendertype=abstract. Accessed 11 Feb 2016.

  60. Li MH, Yu H, Wang TF, Chang ND, Zhang JQ, Du D, et al. Tamoxifen embedded in lipid bilayer improves the oncotarget of liposomal daunorubicin in vivo. J Mater Chem B. 2014;2(12):1619–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to DST-INSPIRE for fellowship (DST/INSPIRE/120736) and travel assistant. They are also grateful to the British council and DST for Newton-Bhabha Ph.D. Placement program (DST/INSPIRE/NBHF/2015/24). The authors would like to thank F. Philipp Seib (University of Strathclyde) and John D. Totten (University of Strathclyde) for providing tissue culture training and assistance with the experimental design of cytotoxicity, flow cytometry, and endocytosis studies. The authors want to acknowledge Dr. V. K. Aswal for helping with SANS study. They would also like to acknowledge TIFR (Mumbai, India) for proving the XRD facility for characterization, the Institute of Chemical Technology, AICTE/NAFETIC for providing laboratory facilities, and the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) for necessary infrastructure and facilities.

Author information

Authors and Affiliations

Authors

Contributions

M.R.P. and P.R.V. conceived the study. M.R.P. manufactured and characterized AMCD nanovesicles as well as performed transmission microscopy and AFM studies. D.A.L. provided training for AFM and host for the majority of experiments at the University of Strathclyde. M.R.P. performed all molecular docking and MD simulation studies. M.R.P and P.R.V. interpreted all the results of in silico studies. In vitro and in vivo experiments were conducted by M.R.P. M.R.P. performed all animal studies. All authors (M.P., D.A.L, and P.R.V.) designed research, discussed the results, and/or advised on the analysis. M.R.P. and P.R.V wrote the manuscript with support from all the authors.

Corresponding author

Correspondence to Pradeep R. Vavia.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 1340 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, M.R., Lamprou, D.A. & Vavia, P.R. Synthesis, Characterization, and Drug Delivery Application of Self-assembling Amphiphilic Cyclodextrin. AAPS PharmSciTech 21, 11 (2020). https://doi.org/10.1208/s12249-019-1572-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1572-z

KEY WORDS

Navigation