Skip to main content

Advertisement

Log in

Fipronil Tablets: Development and Pharmacokinetic Profile in Beagle Dogs

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Increased human–pet interactions have led to concerns related to the prevention and treatment of ectoparasite infestations. Fipronil (FIP) is a widely used ectoparasiticide in veterinary medicine available for topical administration; however, its use may cause damage to the owners and the environment. The aim of the study was to develop immediate-release tablets of FIP, as well as to determine its pharmacokinetic properties after oral administration in beagle dogs. The prepared FIP tablets were evaluated for pre-compression (angle of repose, speed flow, and Carr’s index) and post-compression (weight variation, friability, thickness, hardness, disintegration time, and dissolution rate) parameters. Orally administered FIP at a dose of 2 mg/kg was rapidly absorbed with Cmáx of 3.13 ± 1.39 μg/mL at 1.83 ± 0.40 h post treatment (P.T.) and metabolized with 1.27 ± 1.04 μg/mL at 2.33 ± 0.82 h P.T. for fipronil sulfone (SULF) (the primary metabolite). The elimination of FIP and SULF occurred slowly and had maintained quantifiable plasma levels in the blood for up to 28 days P.T. The goal of the study is aligned with the concept of One Health, which aims to collaboratively achieve the best health for people, animals, and the environment. Therefore, the use of FIP tablets for the control of ectoparasites in dogs may be a safer alternative for owners and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bauer EC, Associate E, Ogg CL, Educator E, Stone DL. Protecting your cats and dogs from pesticide poisoning. NebGuide.2015.

  2. Melo RMPS, Vieira VPC, Tavares PV, Batista LCSO, Carneiro MB, Correia TR, et al. Eficácia do fipronil oral no controle de Ctenocephalides felis felis (siphonaptera: pulicidae) e Rhipicephalus sanguineus (acari: ixodidae) em cães*. Rev Bras Med Vet. 2012;34(1):15–20.

    Google Scholar 

  3. Song Y, Peressin K, Wong PY, Page SW, Garg S. Key considerations in designing oral drug delivery systems for dogs. J Pharm Sci. 2016;105(5):1576–85.

    CAS  PubMed  Google Scholar 

  4. Teerlink J, Hernandez J, Budd R. Fipronil washoff to municipal wastewater from dogs treated with spot-on products. Sci Total Environ. 2017;599–600:960–6.

    PubMed  Google Scholar 

  5. Tingle CCD, Rother JA, Dewhurst CF, Lauer S, King WJ. Fipronil: environmental fate. Ecotoxicol Human Health Concerns. 2003:1–66.

  6. Romero A, Ramos E, Ares I, Castellano V, Martínez M, Martínez-Larrañaga MR, et al. Fipronil sulfone induced higher cytotoxicity than fipronil in SH-SY5Y cells: protection by antioxidants. Toxicol Lett. 2016;252:42–9.

    CAS  PubMed  Google Scholar 

  7. Budd R, Ensminger M, Wang D, Goh KS. Monitoring fipronil and degradates in California surface waters, 2008-2013. J Environ Qual. 2015;44(4):1233–40.

    CAS  PubMed  Google Scholar 

  8. Hovda LR, Hooser SB. Toxicology of newer pesticides for use in dogs and cats. Vet Clin North Am Small Anim Pract. 2002;32(2):455–67.

    PubMed  Google Scholar 

  9. Sadaria AM, Sutton R, Moran KD, Teerlink J, Brown JV, Halden RU. Passage of fiproles and imidacloprid from urban pest control uses through wastewater treatment plants in northern California. USA Environ Toxicol Chem. 2017;36(6):1473–82.

    CAS  PubMed  Google Scholar 

  10. Taylor MA. Recent developments in ectoparasiticides. Vet J. 2001;161(3):253–68.

    CAS  PubMed  Google Scholar 

  11. Bouhsira E, Yoon SS, Roques M, Manavella C, Vermot S, Cramer LG, et al. Efficacy of fipronil, amitraz and (S)-methoprene combination spot-on for dogs against adult dog fleas (Ctenocephalides canis, Curtis, 1826). Vet Parasitol. 2011;179(4):351–3.

    CAS  PubMed  Google Scholar 

  12. McMahen RL, Strynar MJ, Dagnino S, Herr DW, Moser VC, Garantziotis S, et al. Identification of fipronil metabolites by time-of-flight mass spectrometry for application in a human exposure study. Environ Int. 2015;78:16–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cochran RC, Yu L, Krieger RI, Ross JH. Postapplication fipronil exposure following use on pets. J Toxicol Environ Heal - Part A Curr Issues. 2015;78(19):1217–26.

    CAS  Google Scholar 

  14. Dyk MB, Liu Y, Chen Z, Vega H, Krieger RI. Fate and distribution of fipronil on companion animals and in their indoor residences following spot-on flea treatments. J Environ Sci Heal Part B. 2012;47(10):913–24.

    CAS  Google Scholar 

  15. Villanova JCO, Guedes RA, Severi JA. Desafios farmacêuticos no desenvolvimento de produtos veterinários. Tópicos especiais em Ciência Animal III. 2014:235–41.

  16. Storpirts S, Gonçalves JE, Chang C, Gai MN. Biofarmacotécnica. Rio de Janeiro; 2009. p. 321.

  17. Petry G, Fourie J, Wolken S. Comparison of the palatability of a new Flavoured Drontal ® plus tablet (Drontal ® plus treat 10 kg ) and Milbemax ® chewable tablets when presented to privately owned dogs. Open J Vet Med. 2014;4:163–9.

    CAS  Google Scholar 

  18. Darji MA, Lalge RM, Marathe SP, Mulay TD, Fatima T, Alshammari A, et al. Mini-review excipient stability in oral solid dosage forms: a review. AAPS PharmSciTech. 2018;19(1):12–26.

    CAS  PubMed  Google Scholar 

  19. Beugnet F, Franc M. Insecticide and acaricide molecules and/or combinations to prevent pet infestation by ectoparasites. Trends Parasitol. 2012;28(7):267–79.

    CAS  PubMed  Google Scholar 

  20. Mctier TL, Six RH, Fourie JJ, Pullins A, Hedges L, Mahabir SP, et al. Determination of the effective dose of a novel oral formulation of sarolaner (Simparica TM ) for the treatment and month-long control of fleas and ticks on dogs. Vet Parasitol. 2016;222:12–7.

    CAS  PubMed  Google Scholar 

  21. Letendre L, Huang R, Kvaternick V, Harriman J, Drag M, Soll M. Veterinary parasitology the intravenous and oral pharmacokinetics of afoxolaner used as a monthly chewable antiparasitic for dogs. Vet Parasitol. 2014;201(3–4):190–7.

    CAS  PubMed  Google Scholar 

  22. Cid YP, Ferreira TP, Medeiros DMVC, Oliveira RM, Silva NCC, Magalhães VS, et al. Determination of fipronil in bovine plasma by solid-phase extraction and liquid chromatography with ultraviolet detection. Quim Nova. 2012;35(10):2063–6.

    CAS  Google Scholar 

  23. United State Pharmacopeia. USP 41 -NF 37. 2019.

  24. Brazilian Pharmacopeia. 5th edition. 2010.

  25. Martinez NM, Papich MG, Riviere JE. Veterinary application of in vitro dissolution data and the biopharmaceutics classification system. Pharm Forum. 2013;30(6):1–20.

    Google Scholar 

  26. Khan KA. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27(1):48–9.

    CAS  PubMed  Google Scholar 

  27. Lachman HA, Lieberman HA, Kanig JL. Teoria e Prática na Indústria Farmacêutica. Calouste Gulbekian editor 2001.

  28. Kushner J, Langdon BA, Hicks I, Song D, Li F, Kathiria L, et al. A quality-by-design study for an immediate-release tablet platform: examining the relative impact of active pharmaceutical ingredient properties, processing methods, and excipient variability on drug product quality attributes. J Pharm Sci. 2014;103(2):527–38.

    CAS  PubMed  Google Scholar 

  29. Aulton ME. Delineamento de Formas Farmacêuticas. Artmed, editor. 2005. 677 p.

  30. Agência Nacional de Vigilância Sanitária. Nota Técnica 003/2013. Dispõe sobre a avaliação da solubilidade de fármacos e o desenvolvimento de métodos de dissolução para estudo de equivalência farmacêutica. Diário Oficial da União. Brasil. 2013.

  31. Kamalakkannan V, Puratchikody A, Ramanathan L, Jayapraba S. Development and validation of a dissolution test with reversed-phase high performance liquid chromatographic analysis for candesartan cilexetil in tablet dosage forms. Arab J Chem. 2016;9:S867–73.

    CAS  Google Scholar 

  32. Selen A, Cruañes MT, Müllertz A, Dickinson PA, Cook JA, Polli JE, et al. Meeting report meeting report: applied biopharmaceutics and quality by design for dissolution/release specification setting: product quality for patient benefit. AAPS J. 2010;12(3):465–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Agência Nacional de Vigilância Sanitária. Resolução-RDC No 31, de 11 de agosto de 2010. Dispõe sobre a realização dos Estudos de Equivalência Farmacêutica e de Perfil de Dissolução Comparativo. Diário Oficial da União Brasil 2010.

  34. Khan A. Development and validation of a discriminatory dissolution testing method for orally disintegrating tablets (ODTs) of domperidone. Dissolution Technol. 2017;24(2):28–36.

    CAS  Google Scholar 

  35. Winter M Farmacocinética Clínica Básica. Pharmabooks, editor. São Paulo; 2012. 522 p.

  36. Wang X, Martínez MA, Wu Q, Ares I, Martínez-Larrañaga MR, Anadón A, et al. Fipronil insecticide toxicology: oxidative stress and metabolism. Crit Rev Toxicol. 2016;46(10):876–99.

    CAS  PubMed  Google Scholar 

  37. Agência Nacional de Vigilância Sanitária. Resolução -RDC No 1.170, de 19 de abril de 2006 Guia para provas de biodisponibilidade relativa/bioequivalência de medicamentos. Diário Oficial da União. Brasil. 2006.

  38. Holmes P Toxicity study by oral (capsules) administration tp beagle dogs for 13 weeks. Life Sci Res Ltd 1991.

  39. Cerkvenik VF, Grabnar I. V Ivermectin pharmacokinetics. Slov Vet Res. 2002;39:167–78.

    Google Scholar 

  40. Leghait J, Gayrard V, Picard-Hagen N, Camp M, Perdu E, Toutain PL, et al. Fipronil-induced disruption of thyroid function in rats is mediated by increased total and free thyroxine clearances concomitantly to increased activity of hepatic enzymes. Toxicology. 2009;255(1–2):38–44.

    CAS  PubMed  Google Scholar 

  41. Leghait J, Gayrard V, Toutain P, Picard-hagen N, Viguié C. Is the mechanisms of fipronil-induced thyroid disruption specific of the rat: re-evaluation of fipronil thyroid toxicity in sheep? Toxicol Lett. 2010;194:51–7.

    CAS  PubMed  Google Scholar 

  42. Lacroix MZ, Puel S, Toutain PL, Viguié C. Quantification of fipronil and its metabolite fipronil sulfone in rat plasma over a wide range of concentrations by LC/UV/MS. J Chromatogr B. 2010;878:1934–8.

    CAS  Google Scholar 

  43. Hu G-X, Chen X-Y, Zhou H-Y, Qiu X-J, Chen B-B, Lu Z-Q. Toxicokinetics of fipronil and fipronil sulfone in rabbits. Chinese J Pharmacol Toxicol. 2006;20:356–60.

    CAS  Google Scholar 

  44. Arisov MV, Indyuhova EN, Arisova GB. Pharmacokinetics of combination antiparasitic drug preparation for dogs and cats in the form of spot-on solution. J Adv Vet Anim Res. 2019;7710:25–32.

    Google Scholar 

  45. Cochet P, Birckel P, Bromet N, Well A. Skin distribution of fipronil by microautoradiography following topical administration to the beagle dog. Eur J Drug Metab Pharmacokinet. 1997;22(3):211–6.

    CAS  PubMed  Google Scholar 

  46. Birckel P, Cochet P, Benard P, Weil A. Cutaneous distribution of 14C-fipronil in the dog and in the cat following a spot-on administration. Adv Vet Dermatol. 1998;3:571–2.

    Google Scholar 

  47. Cid YP, Ferreira TP, Magalhães VS, Correia TR, Scott FB. Injectable fipronil for cattle: plasma disposition and efficacy against Rhipicephalus microplus. Vet Parasitol. 2016;220:4–8.

    CAS  PubMed  Google Scholar 

  48. Ingenloff K, Garlapati R, Poché D, Singh MI, Remmers JL, Poché RM. Feed-through insecticides for the control of the sand fly Phlebotomus argentipes. Med Vet Entomol. 2013;27(1):10–8.

    CAS  PubMed  Google Scholar 

  49. Poché RM, Garlapati R, Singh MI, David M, Garlapati R, Singh MI. Evaluation of fipronil oral dosing to cattle for control of adult and larval sand flies under controlled conditions. J Med Entomol. 2013;50(4):833–7.

    PubMed  Google Scholar 

  50. Poché RM, Githaka N, Van Gool F, Kading RC, Hartman D, Polyakova L, et al. Acta tropica preliminary efficacy investigations of oral fipronil against Anopheles arabiensis when administered to zebu cattle (Bos indicus) under field conditions. Acta Trop. 2017;176:126–33.

    PubMed  PubMed Central  Google Scholar 

  51. Poche DM, Sayakova Z, Polyakova L, Aimakhanov B. Field evaluation of a 0.005% fipronil bait , orally administered to Rhombomys opimus, for control of fleas (Siphonaptera:Pulicidae) and phlebotomine sand flies (Diptera: Psychodidae) in the Central Asian Republic of Kazakhstan. Neglected Tropical Diseases. 2018;12(7):e0006630 1–23.

    Google Scholar 

  52. Eads DA, Biggins DE, Bowser J, Broerman K, Livieri TM, et al. Evaluation of five pulicides to suppress fleas on black-tailed prairie dogs: encouraging long-term results with systemic 0.005% fipronil. Vector-Borne and Zoonotic Diseases. 2019;XX, 1(XX):–7.

  53. JMPR (Joint meeting of the FAO panel of experts on pesticide residues in food, Environment). T. Pesticide residues in food. Toxicological and Environmental Evaluations.1997.http://www.inchem.org/documents/jmpr/jmpmono/v097pr09.htm. Acessed 10 Sept 2019.

  54. Cravedi JP, Delous G, Zalko D, Viguié C, Debrauwer L. Chemosphere disposition of fipronil in rats. Chemosphere. 2013;93(10):2276–83.

    CAS  PubMed  Google Scholar 

  55. Halos L, Carithers DS, Solanki R, Stanford H, Gross SJ, Merial SAS. Preference of dogs between two commercially available oral formulations of ectoparasiticide containing isoxazolines. Afoxolaner or Fluralaner. 2015;05(02):25–9.

    CAS  Google Scholar 

  56. Coles TB, Dryden MW. Insecticide/acaricide resistance in fleas and ticks infesting dogs and cats. Parasit Vectors. 2014;7:8 1–10.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by Fundação de Apoio à Pesquisa Tecnológica da Universidade Federal Rural do Rio de Janeiro (FAPUR), Fundação de Apoio a Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). English-language editing of this manuscript was provided by Journal Prep Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yara Peluso Cid.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, G.C.M., Rosado, L.H.G., Alves, M.C.C. et al. Fipronil Tablets: Development and Pharmacokinetic Profile in Beagle Dogs. AAPS PharmSciTech 21, 9 (2020). https://doi.org/10.1208/s12249-019-1571-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1571-0

Key Words

Navigation