Effect of Glucosamine Conjugate-Functionalized Liposomes on Glioma Cell and Healthy Brain: An Insight for Future Application in Brain Infusion

Abstract

Conjugation of D-glucosamine with lipophilic moiety can ease its application in surface modification of liposomes. Interestingly, although D-glucosamine is safe, studies have shed light on “toxic effect” of its conjugates on cancer cells and highlighted its application in targeting glioma. However, understanding the safety of such conjugates for local delivery to the brain is unavailable. Herein, after successful synthesis of D-glucosamine conjugate (GC), the toxicity of functionalized liposome was evaluated both in vitro and in vivo. The study revealed a significant effect on cytotoxicity and apoptosis in vitro as assessed on grade IV-resistant glioma cell lines, SF268, U87MG, using MTT assay and PI staining. Additionally, this effect was not observed on normal human erythrocytes in the hemolysis assay. Furthermore, we demonstrated that GC liposomes were non-toxic to the normal brain tissues of healthy Sprague-Dawley rats. Successful functionalization yielded liposome with uniform particle size, stability, and cellular uptake. With < 10% hemolysis, all the liposomal formulations demonstrated hemato-compatibility but led to high glioma cytotoxicity. The surface density of conjugate played an important role in tumor toxicity (0.5 < 1.0 ≤ 2.0% molar ratio). PI staining revealed that compared to control cell, functionalization led 26-fold increase in induction of apoptosis in glioma cells. Absence of histological and behavioral changes along with the absence of caspase-3 in brain tissue confirmed the suitability of the system for direct infusion in the brain. Thus, this study will aid the future development of clinically useful local chemotherapeutic without “add-in” side effects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Reginster JY, Deroisy R, Rovati LC, Lee RL, Lejeune E, Bruyere O, et al. Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial. Lancet. 2001;357(9252):251–6.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Zhang L, Liu W, Han B, Wang D. Synthesis and antitumor activity of arginine-glucosamine conjugate. Carbohydr Polym. 2007;69(4):644–50.

    CAS  Article  Google Scholar 

  3. 3.

    Hwang MS, Baek WK. Glucosamine induces autophagic cell death through the stimulation of ER stress in human glioma cancer cells. Biochem Biophys Res Commun. 2010;399(1):111–6.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Jiang X, Xin H, Gu J, Du F, Feng C, Xie Y, et al. Enhanced antitumor efficacy by d-glucosamine-functionalized and paclitaxel-loaded poly(ethylene glycol)-co-poly(trimethylene carbonate) polymer nanoparticles. J Pharm Sci. 2014;103(5):1487–96.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Taylor P, Veerapandian M, Yun K. Synthesis of silver nanoclusters and functionalization with glucosamine for glyconanoparticles. Inorganic and Nano-Metal Chemistry. 2010;40(1):56–64.

    Google Scholar 

  6. 6.

    Cheung RCF, Ng TB, Wong JH, Chan WY. Chitosan: an update on potential biomedical and pharmaceutical applications. Marine Drugs. 2015;13(8):5156–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Guggi D, Langoth N, Hoffer MH, Wirth M, Bernkop-Schnürch A. Comparative evaluation of cytotoxicity of a glucosamine-TBA conjugate and a chitosan-TBA conjugate. Int J Pharm. 2004;278(2):353–60.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Impact of nanoparticles on brain health: an up to date overview. J Clin Med. 2018;7(490).

  9. 9.

    Jiang X, Xin H, Ren Q, Gu J, Zhu L, Du F, et al. Nanoparticles of 2-deoxy-D-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials. 2014;35(1):518–29.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Pawar S, Shevalkar G, Vavia P. Glucosamine-anchored doxorubicin-loaded targeted nano-niosomes: pharmacokinetic, toxicity and pharmacodynamic evaluation. J Drug Target. 2016;24(8):730–43.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Yao L-Y, Lin Q, Niu Y-Y, Deng K-M, Zhang J-H, Lu Y. Synthesis of lipoamino acids and their activity against cerebral ischemic injury. Molecules (Basel, Switzerland). 2009;14(10):4051–64.

    CAS  Article  Google Scholar 

  12. 12.

    Jaafar-Maalej C, Sfar S, Fessi H, Laouini A, Limayem-Blouza I, Charcosset C. Preparation, characterization and applications of liposomes: state of the art. J Colloid Sci Biotechnol. 2012;1(2):147–68.

    Article  CAS  Google Scholar 

  13. 13.

    Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine. 2013;8(9):1509–28.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Nam L, Coll C, Erthal LCS, de Torre C d, Id DS. Drug delivery nanosystems for the localized treatment of glioblastoma multiforme. Materials. 2018;11(779).

  15. 15.

    Goodenberger ML, Jenkins RB. Genetics of adult glioma. Cancer Genetics. 2012;205:613–21.

  16. 16.

    Wang Y, Jiang T. Understanding high grade glioma: molecular mechanism, therapy and comprehensive management. Cancer Lett. 2013;331(2):139–46.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):701–5.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Chen J, Chen H, Cui S, Xue B, Tian J, Achilefu S, et al. Glucosamine derivative modified nanostructured lipid carriers for targeted tumor delivery. J Mater Chem. 2012;22(12):5770–83.

    CAS  Article  Google Scholar 

  19. 19.

    Lapidot Y, De Groot N, Fry-Shafrir I. Modified aminoacyl-tRNA: II. A general method for the preparation of acylaminoacyl-tRNA. Biochim Biophys Acta. 1967;145(2):292–9.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Pawar S, Vavia P. Glucosamine anchored cancer targeted nano-vesicular drug delivery system of doxorubicin. J Drug Target. 2016;24(1):68–79.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Zhou W, Zhang Y, He J. Determination of content and entrapment efficiency of clindamycin phosphate liposome. J Biomed Eng. 2009;26(3):566–8.

    CAS  Google Scholar 

  22. 22.

    Monpara J, Velga D, Verma T, Gupta S, Vavia P. Cationic cholesterol derivative efficiently delivers the genes: in silico and in vitro studies. Drug Deliv Transl Res. 2019;9(1):106–22.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Brownlie A, Uchegbu IF, Schatzlein AG. PEI-based vesicle-polymer hybrid gene delivery system with improved biocompatibility. Int J Pharm. 2004;274(1–2):41–52.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Zhao Z, Li Y, Jain A, Chen Z, Liu H, Jin W, et al. Development of a peptide-modified siRNA nanocomplex for hepatic stellate cells. Nanomedicine. 2018;14(1):51–61.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Patel K, Doddapaneni R, Sekar V, Chowdhury N, Singh M. Combination approach of YSA peptide anchored docetaxel stealth liposomes with oral antifibrotic agent for the treatment of lung cancer. Mol Pharm. 2016;13(6):2049–58.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Jain A, Barve A, Zhao Z, Fetse JP, Liu H, Li Y, et al. Targeted delivery of an siRNA/PNA hybrid nanocomplex reverses carbon tetrachloride-induced liver fibrosis. Adv Ther. 2019;1900046:1900046.

    Article  CAS  Google Scholar 

  27. 27.

    Ichite N, Chougule MB, Jackson T, Fulzele SV, Safe S, Singh M. Enhancement of docetaxel anticancer activity by a novel diindolylmethane compound in human non-small cell lung cancer. Clin Cancer Res. 2009;15(2):543–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Tyagi N, Ghosh PC. Folate receptor mediated targeted delivery of ricin entrapped into sterically stabilized liposomes to human epidermoid carcinoma (KB) cells: effect of monensin intercalated into folate-tagged liposomes. Eur J Pharm Sci. 2011;43(4):343–53.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Gu F, Hu C, Tai Z, Yao C, Tian J, Zhang L, et al. Tumour microenvironment-responsive lipoic acid nanoparticles for targeted delivery of docetaxel to lung cancer. Sci Rep. 2016;6(October):1–15.

    Google Scholar 

  30. 30.

    Abdalla YOA, Nyamathulla S, Shamsuddin N, Arshad NM, Mun KS, Awang K, et al. Acute and 28-day sub-acute intravenous toxicity studies of 1’-S-1′-acetoxychavicol acetate in rats. Toxicol Appl Pharmacol. 2018;356:204–13.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int. 2014.

  32. 32.

    Barré A, Ţînţaş M-L, Levacher V, Papamicaël C, Gembus V. An overview of the synthesis of highly versatile N-hydroxysuccinimide esters. Synthesis. 2017;49(03):472–83.

    Google Scholar 

  33. 33.

    Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153(3):198–205.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Nordling-David MM, Ya R, Guez D, Meirow H, Last D, Grad E, et al. Liposomal temozolomide drug delivery using convection enhanced delivery. J Control Release. 2017;261:138–46.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Van’t Erve TJ, Wagner BA, Martin SM, Knudson CM, Blendowski R, Keaton M, et al. The heritability of hemolysis in stored human red blood cells. Transfusion. 2015;55(6):1178–85.

    Article  Google Scholar 

  37. 37.

    Chu C, Xu P, Zhao H, Chen Q, Chen D, Hu H, et al. Effect of surface ligand density on cytotoxicity and pharmacokinetic profile of docetaxel loaded liposomes. Asian J Pharm Sci. 2016;11(5):655–61.

    Article  Google Scholar 

  38. 38.

    Cattel L, Crosasso P, Ceruti M, Brusa P, Dosio F, Arpicco S. Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J Control Release. 2002;63(1–2):19–30.

    Google Scholar 

  39. 39.

    Woodle MC. Surface-modified liposomes: assessment and characterization for increased stability and prolonged blood circulation. Chem Phys Lipids. 1993;64(1–3):249–62.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Saul JM, Annapragada A, Natarajan JV, Bellamkonda RV. Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. J Control Release. 2003;92(1–2):49–67.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Thasneem YM, Sajeesh S, Sharma CP. Glucosylated polymeric nanoparticles: a sweetened approach against blood compatibility paradox. Colloids Surf B: Biointerfaces. 2013;108:337–44.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Riccardi C, Nicoletti I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc. 2006;1(3):1458–61.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Hwang SY, Shin JH, Hwang JS, Kim SY, Shin JA, Oh ES, et al. Glucosamine exerts a neuroprotective effect via suppression of inflammation in rat brain ischemia/reperfusion injury. Glia. 2010;58(15):1881–92.

    PubMed  Article  Google Scholar 

  44. 44.

    Rivlin M, Navon G. Glucosamine and N-acetyl glucosamine as new CEST MRI agents for molecular imaging of tumors. Sci Rep. 2016;6:32648.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank DST-INSPIRE (IF 130476) and AICTE/NAFETIC for providing financial assistance and facility to conduct the research, respectively. The authors also thank Mr. Akshay Kaushal, Central Research Facility, Indian Institute of Technology, Delhi, for HR-TEM and TIFR for XRD study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pradeep Vavia.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 306 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yadav, N., Rajendra, J., Acharekar, A. et al. Effect of Glucosamine Conjugate-Functionalized Liposomes on Glioma Cell and Healthy Brain: An Insight for Future Application in Brain Infusion. AAPS PharmSciTech 21, 24 (2020). https://doi.org/10.1208/s12249-019-1567-9

Download citation

Key Words

  • nanotoxicology
  • glucosamine conjugate
  • surface density
  • brain infusion
  • selective toxicity