Skip to main content

Advertisement

Log in

Polyethylene Oxide (PEO) Molecular Weight Effects on Abuse-Deterrent Properties of Matrix Tablets

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

While polyethylene oxide (PEO)-based matrix tablets are frequently used as abuse-deterrent dosage forms, there is limited information available regarding how the selection of formulation components and manufacturing processes affect the resulting abuse-deterrent properties. The objective of the current study was to evaluate the effects of formulation and process variables on the abuse-deterrent features of PEO-containing tablets. Directly compressed tablets were prepared using three different PEO molecular weights (100,000; 900,000; and 5,000,000). As anticipated, sintering/thermal treatment above the melting point of PEO was crucial to impart crush-resistant features (tablet hardness > 500 N). In addition to the sintering temperature, the weight fraction of PEO in the tablets affected their mechanical strength, and at least 50% w/w PEO was required to impart the desired crush-resistant features. In addition, the formulation and process variables also impacted syringeability and injectability of the PEO gels formed when the tablets were hydrated to simulate attempted drug extraction. High molecular weight PEO (900,000 and 5,000,000) produced gels more resistant to syringeability and injectability compared to low molecular weight PEO (100,000). Sintering above the polymer melting point decreased PEO crystallinity after cooling, and longer sintering times resulted in PEO degradation producing lower viscosity gels with reduced resistance to syringeability and injectability. Although sintering above the melting point of PEO imparts optimal mechanical strength to the tablets, prolonged sintering durations negatively impact polymer stability and alter the resulting abuse-deterrent features of the PEO-based tablet formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lessenger JE, Feinberg SD. Abuse of prescription and over-the-counter medications. J Am Board Fam Med. 2008;21(1):45–54. https://doi.org/10.3122/jabfm.2008.01.070071.

    Article  PubMed  Google Scholar 

  2. Commonly Abused Prescription Drugs. www.drugabuse.gov [11 Feb 2019]; Available from: https://www.drugabuse.gov/sites/default/files/rx_drugs_placemat_508c_10052011.pdf.

  3. Compton WM, Volkow ND. Abuse of prescription drugs and the risk of addiction. Drug Alcohol Depend. 2006;83:S4–7. https://doi.org/10.1016/j.drugalcdep.2005.10.020.

    Article  CAS  PubMed  Google Scholar 

  4. Understanding Abuse Deterrent Opioids. www.fda.gov [11 Feb 2019]; Available from: https://www.fda.gov/downloads/AboutFDA/WorkingatFDA/FellowshipInternshipGraduateFacultyPrograms/PharmacyStudentExperientialProgramCDER/UCM532123.pdf.

  5. Muppalaneni S, Mastropietro DJ, Omidian H. Crush resistance and insufflation potential of poly (ethylene oxide)-based abuse deterrent formulations. Expert Opin Drug Deliv. 2016;13(10):1375–82. https://doi.org/10.1080/17425247.2016.1211638.

    Article  CAS  PubMed  Google Scholar 

  6. Royce AE. Directly compressible polyethylene oxide vehicle for preparing therapeutic dosage forms. United States Patent US 5,273-758; 1993.

  7. Bartholomaeus JH, Arkenau-Marić E, Galia E. Opioid extended-release tablets with improved tamper-resistant properties. Expert Opin Drug Deliv. 2012;9(8):879–91.

    Article  CAS  PubMed  Google Scholar 

  8. Mastropietro DJ, Omidian H. Abuse-deterrent formulations: part 2: commercial products and proprietary technologies. Expert Opin Pharmacother. 2015;16(3):305–23. https://doi.org/10.1517/14656566.2014.970175.

    Article  CAS  PubMed  Google Scholar 

  9. Herry C, Monti A, Vauzelle-Kervroedan F, Oury P, Michel L. Reducing abuse of orally administered prescription opioids using formulation technologies. J Drug Deliv Sci Technol. 2013;23(2):103–10.

    Article  CAS  Google Scholar 

  10. Webster LR, Markman J, Cone EJ, Niebler G. Current and future development of extended-release, abuse-deterrent opioid formulations in the United States. Postgrad Med J. 2017;129(1):102–10. https://doi.org/10.1080/00325481.2017.1268902.

    Article  Google Scholar 

  11. Maincent J, Zhang F. Recent advances in abuse-deterrent technologies for the delivery of opioids. Int J Pharm. 2016;510(1):57–72. https://doi.org/10.1016/j.ijpharm.2016.06.012.

    Article  CAS  PubMed  Google Scholar 

  12. Ma L, Deng L, Chen J. Applications of poly (ethylene oxide) in controlled release tablet systems: a review. Drug Dev Ind Pharm. 2014(7):40, 845–851 https://doi-org.proxy.lib.uiowa.edu/10.3109/03639045.2013.831438.

  13. Upadhye SB, Rajabi-Siahboomi AR. Properties and applications of polyethylene oxide and ethylcellulose for tamper resistance and controlled drug delivery. In: Repka MA, Langley N, DiNunzio J, editors. Melt extrusion: materials, technology and drug product design. New York: Springer New York; 2013. p. 145–58.

    Chapter  Google Scholar 

  14. Rahman Z, Yang Y, Korang-Yeboah M, Siddiqui A, Xu X, Ashraf M, et al. Assessing impact of formulation and process variables on in-vitro performance of directly compressed abuse deterrent formulations. Int J Pharm. 2016;502(1–2):138–50. https://doi.org/10.1016/j.ijpharm.2016.02.029.

    Article  CAS  PubMed  Google Scholar 

  15. German RM. Sintering theory and practice. Hoboken: Wiley; 1996.

    Google Scholar 

  16. German RM. Liquid-phase sintering. Sintering Theory and Practice. Hoboken: Wiley; 1996. p. 225–307.

    Google Scholar 

  17. German RM. Solid-state sintering of mixed powders. Sintering Theory and Practice. Hoboken: Wiley; 1996. p. 178–221.

    Google Scholar 

  18. Singh R, Poddar SS, Chivate A. Sintering of wax for controlling release from pellets. AAPS PharmSciTech. 2007;8(3):E175–E83. https://doi.org/10.1208/pt0803074.

    Article  PubMed Central  Google Scholar 

  19. Cohen J, Siegel RA, Langer R. Sintering technique for the preparation of polymer matrices for the controlled release of macromolecules. J Pharm Sci. 1984;73(8):1034–7. https://doi.org/10.1002/jps.2600730805.

    Article  CAS  PubMed  Google Scholar 

  20. Nijenhuis A, Colstee E, Grijpma D, Pennings A. High molecular weight poly (L-lactide) and poly (ethylene oxide) blends: thermal characterization and physical properties. Polymer. 1996;37(26):5849–57. https://doi.org/10.1016/S0032-3861(96)00455-7.

    Article  CAS  Google Scholar 

  21. Meruva S, Donovan MD. Effects of drug-polymer interactions on tablet properties during the development of abuse-deterrent dosage forms. AAPS PharmSciTech. 2019;20(3):93. https://doi.org/10.1208/s12249-018-1221-y.

    Article  CAS  PubMed  Google Scholar 

  22. Kinzler ER, Pantaleon C, Iverson MS, Aigner S. Syringeability of morphine ARER, a novel, abuse-deterrent, extended-release morphine formulation. Am J Drug Alcohol Abuse. 2019;45:1–8.

    Article  Google Scholar 

  23. Ardizzone S, Dioguardi F, Mussini P, Mussini T, Rondinini S, Vercelli B, et al. Batch effects, water content and aqueous/organic solvent reactivity of microcrystalline cellulose samples. Int J Biol Macromol. 1999;26(4):269–77.

    Article  CAS  PubMed  Google Scholar 

  24. Rahman Z, Zidan AS, Korang-Yeboah M, Yang Y, Siddiqui A, Shakleya D, et al. Effects of excipients and curing process on the abuse deterrent properties of directly compressed tablets. Int J Pharm. 2017;517(1–2):303–11.

    Article  CAS  PubMed  Google Scholar 

  25. Yang L, Venkatesh G, Fassihi R. Characterization of compressibility and compactibility of poly (ethylene oxide) polymers for modified release application by compaction simulator. J Pharm Sci. 1996;85(10):1085–90.

    Article  CAS  PubMed  Google Scholar 

  26. Maggi L, Segale L, Torre M, Machiste EO, Conte U. Dissolution behaviour of hydrophilic matrix tablets containing two different polyethylene oxides (PEOs) for the controlled release of a water-soluble drug. Dimensionality study. Biomaterials. 2002;23(4):1113–9.

    Article  CAS  PubMed  Google Scholar 

  27. Nicholson LM, Whitley KS, Gates TS, Hinkley JA. Influence of molecular weight on the mechanical performance of a thermoplastic glassy polyimide. J Mater Sci. 2000;35(24):6111–21.

    Article  CAS  Google Scholar 

  28. Boyce H. Mechanistic evaluation of polyethylene oxide for physical barrier type abuse deterrent formulations: techniques and in vitro methods [research]. College Park: University of Maryland; 2017.

    Google Scholar 

  29. Bartholomaus J, Schwier S, Brett M. New abuse deterrent formulation (ADF) technology for immediate-release opioids. Drug Dev Deliv. 2013;13(8):76–81.

    Google Scholar 

  30. Li L, Liu J-t, Ren Z-j, Yan S-k. Crystallization behavior of disproportionately high and low molecular weight PEO blends. Chin J Polym Sci. 2014;32(9):1199–209. https://doi.org/10.1007/s10118-014-1497-7.

    Article  CAS  Google Scholar 

  31. Crowley MM, Zhang F, Koleng JJ, McGinity JW. Stability of polyethylene oxide in matrix tablets prepared by hot-melt extrusion. Biomaterials. 2002;(21):23, 4241–4228. https://doi.org/10.1016/S0142-9612(02)00187-4.

  32. Huang F, Wei Q, Wang J, Cai Y, Huang Y. Effect of temperature on structure, morphology and crystallinity of PVDF nanofibers via electrospinning. e-Polymers. 2008;8(1).

  33. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63(15):2223–53.

    Article  CAS  Google Scholar 

  34. Ebagninin KW, Benchabane A, Bekkour K. Rheological characterization of poly (ethylene oxide) solutions of different molecular weights. J Colloid Interface Sci. 2009;336(1):360–7.

    Article  CAS  PubMed  Google Scholar 

  35. Liu W-H, Yu TL, Lin H-L. Shear thickening behavior of dilute poly (diallyl dimethyl ammonium chloride) aqueous solutions. Polymer. 2007;48(14):4152–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Ram Prakash Govindarajan for his assistance and contributions and Dr. Suresh Raghavan for his assistance and use of equipment for the syringeability and injectability studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maureen D. Donovan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meruva, S., Donovan, M.D. Polyethylene Oxide (PEO) Molecular Weight Effects on Abuse-Deterrent Properties of Matrix Tablets. AAPS PharmSciTech 21, 28 (2020). https://doi.org/10.1208/s12249-019-1565-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1565-y

Key words

Navigation