Skip to main content

Advertisement

Log in

Transdermal Microneedles—A Materials Perspective

  • Mini-Review
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Transdermal drug delivery is an emerging field in the pharmaceutical remit compared with conventional methods (oral and parenteral). Microneedle (MN)-based devices have gained significant interest as a strategy to overcome the skin’s formidable barrier: the stratum corneum. This approach provides a less invasive, more efficient, patient friendly method of drug delivery with the ability to incorporate various therapeutic agents including macromolecules (proteins and peptides), anti-cancer agents and other hydrophilic and hydrophobic compounds. This short review attempts to assess the various materials involved in the fabrication of MNs as well as incorporation of other excipients to improve drug delivery for novel medical devices. The focus will be on polymers, metals and other inorganic materials utilised for MN drug delivery, as well as their application, limitations and future work to be carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Au:

Gold

CMNs:

Coated microneedles

DAB:

Droplet air born

DMNs:

Dissolved microneedles

EHDA:

Electrohydrodynamic atomisation

FDA:

Food and drug

GMNs:

Glass microneedles

HA:

Hyaluronic acid

HFMNs:

Hydrogel forming microneedles

HMNs:

Hollow microneedle

IF:

Interstitial fluid

ISG:

Inorganic silica glass

MSN:

Mesoporous silica nanoparticles

MNS:

Metal microneedles

ODD:

Oral drug delivery

PCL:

Polycaprolactone

Pd:

Palladium

PDMS:

Polydimethylsiloxane

PLA:

Polylactic acid

PLGA:

Poly-lactic glycolic acid

PMMA:

Poly(methyl methacrylate)

PS:

Polystyrene

PVA:

Polyvinyl alcohol

PVP:

Polyvinylpyrrolidone

SC:

Stratum corneum

SMNs:

Solid microneedles

TDD:

Transdermal drug delivery

Ti:

Titanium

TP:

Transdermal patches

ZMNs:

Zeolite microneedles

References

  1. Nurunnabi M, Revuri V, Huh KM, Lee Y. Chapter 14 - Polysaccharide based nano/microformulation: An effective and versatile oral drug delivery system. In: Nanostructures for oral medicine. Amsterdam, Netherlands: Elsevier; 2017;409-433.

  2. Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Rep. 2016;104:1–32.

    Google Scholar 

  3. Malinovskaja-Gomez K, Espuelas S, Garrido MJ, Hirvonen J, Laaksonen T. Comparison of liposomal drug formulations for transdermal iontophoretic drug delivery. Eur J Pharm Sci. 2017;106:294–301.

    CAS  PubMed  Google Scholar 

  4. Lam PL, Gambari R. Advanced progress of microencapsulation technologies: in vivo and in vitro models for studying oral and transdermal drug deliveries. J Control Release. 2014;178:25–45.

    CAS  PubMed  Google Scholar 

  5. Kim Y, Park J, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. El-Say KM, El-Sawy HS. Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm. 2017;528(1–2):675–91.

    CAS  PubMed  Google Scholar 

  7. Ma G, Wu C. Microneedle, bio-microneedle and bio-inspired microneedle: a review. J Control Release. 2017;251:11–23.

    CAS  PubMed  Google Scholar 

  8. Donnelly R, Douroumis D. Microneedles for drug and vaccine delivery and patient monitoring. Drug Deliv Transl Res. 2015;5(4):311–2.

    PubMed  Google Scholar 

  9. Takeuchi I, Shimamura Y, Kakami Y, et al. Transdermal delivery of 40-nm silk fibroin nanoparticles. Colloids Surf B: Biointerfaces. 2019;175:564–8. https://doi.org/10.1016/j.colsurfb.2018.12.012.

    Article  CAS  PubMed  Google Scholar 

  10. Miller MA, Yu F, Kim K, Kasting GB. Uptake and desorption of hydrophilic compounds from human stratum corneum. J Control Release. 2017;261:307-317

  11. Chen Y, Wang M, Fang L. Biomaterials as novel penetration enhancers for transdermal and dermal drug delivery systems. Drug Deliv. 2013;20(5):199-209

  12. Chen Y, Quan P, Liu X, Wang M, Fang L. Novel chemical permeation enhancers for transdermal drug delivery. Asian J Pharmaceut Sci. 2014;9(2):51–64.

    Google Scholar 

  13. Balázs B, Vizserálek G, Berkó S, et al. Investigation of the efficacy of transdermal penetration enhancers through the use of human skin and a skin mimic artificial membrane. J Pharm Sci. 2016;105(3):1134–40.

    PubMed  Google Scholar 

  14. Lee JW, Gadiraju P, Park J, Allen MG, Prausnitz MR. Microsecond thermal ablation of skin for transdermal drug delivery. J Control Release. 2011;154(1):58–68. https://doi.org/10.1016/j.jconrel.2011.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ouyang Q, Feng X, Kuang S, et al. Self-powered, on-demand transdermal drug delivery system driven by triboelectric nanogenerator. Nano Energy. 2019;62:610–9. https://doi.org/10.1016/j.nanoen.2019.05.056.

    Article  CAS  Google Scholar 

  16. Anirudhan TS, Nair SS. Development of voltage gated transdermal drug delivery platform to impose synergistic enhancement in skin permeation using electroporation and gold nanoparticle. Mater Sci Eng C. 2019;102:437–46. https://doi.org/10.1016/j.msec.2019.04.044.

    Article  CAS  Google Scholar 

  17. Zhao X, Coulman SA, Hanna SJ, Wong FS, Dayan CM, Birchall JC. Formulation of hydrophobic peptides for skin delivery via coated microneedles. J Control Release. 2017;265:2–13. https://doi.org/10.1016/j.jconrel.2017.03.015.

    Article  CAS  PubMed  Google Scholar 

  18. Yin Z, Kuang D, Wang S, Zheng Z, Yadavalli VK, Lu S. Swellable silk fibroin microneedles for transdermal drug delivery. Int J Biol Macromol. 2018;106:48–56. https://doi.org/10.1016/j.ijbiomac.2017.07.178.

    Article  CAS  PubMed  Google Scholar 

  19. Chen F, Yan Q, Yu Y, Wu MX. BCG vaccine powder-laden and dissolvable microneedle arrays for lesion-free vaccination. J Control Release. 2017;255:36–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Donnelly RF, Singh TRR, Garland MJ, et al. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv Funct Mater. 2012;22(23):4879–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fernando GJP, Zhang J, Ng H, Haigh OL, Yukiko SR, Kendall MAF. Influenza nucleoprotein DNA vaccination by a skin targeted, dry coated, densely packed microprojection array (nanopatch) induces potent antibody and CD8+ T cell responses. J Control Release. 2016;237:35–41.

    CAS  PubMed  Google Scholar 

  22. Tu J, Du G, Reza Nejadnik M, et al. Mesoporous silica nanoparticle-coated microneedle arrays for intradermal antigen delivery. Pharamceut Res. 2017;34:1693–706.

    CAS  Google Scholar 

  23. Yu W, Jiang G, Liu D, et al. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin. Mater Sci Eng C. 2017;71:725–34.

    CAS  Google Scholar 

  24. Skoog SA, Miller PR, Boehm RD, Sumant AV, Polsky R, Narayan RJ. Nitrogen-incorporated ultrananocrystalline diamond microneedle arrays for electrochemical biosensing. Diam Relat Mater. 2015;54:39–46.

    CAS  Google Scholar 

  25. Ita K. Transdermal delivery of drugs with microneedles: strategies and outcomes. J Drug Deliv Sci Technol. 2015;29:16–23.

    CAS  Google Scholar 

  26. Luangveera W, Jiruedee S, Mama W, et al. Fabrication and characterization of novel microneedles made of a polystyrene solution. J Mech Behav Biomed Mater. 2015;50:77–81.

    CAS  PubMed  Google Scholar 

  27. Lee HJ, Son Y, Kim D, et al. A new thin silicon microneedle with an embedded microchannel for deep brain drug infusion. Sens Actuator B-Chem. 2015;209:413–22.

    CAS  Google Scholar 

  28. Zhu DD, Wang QL, Liu XB, Guo XD. Rapidly separating microneedles for transdermal drug delivery. Acta Biomater. 2016;41:312–9.

    CAS  PubMed  Google Scholar 

  29. Arya J, Prausnitz MR. Microneedle patches for vaccination in developing countries. J Control Release. 2016;240:135–41.

    CAS  PubMed  Google Scholar 

  30. O’Mahony C, Hilliard L, Kosch T, et al. Accuracy and feasibility of piezoelectric inkjet coating technology for applications in microneedle-based transdermal delivery. Microelectron Eng. 2017;172:19–25.

    Google Scholar 

  31. Rasekh M, Karavasili C, Soong YL, et al. Electrospun PVP–indomethacin constituents for transdermal dressings and drug delivery devices. Int J Pharm. 2014;473(1):95–104. https://doi.org/10.1016/j.ijpharm.2014.06.059.

    Article  CAS  PubMed  Google Scholar 

  32. Lee I, Wu Y, Tsai S, Chen C, Wu M. Fabrication of two-layer dissolving polyvinylpyrrolidone microneedles with different molecular weights for in vivo insulin transdermal delivery. RSC Adv. 2017;7(9):5067–75.

    CAS  Google Scholar 

  33. Machekposhti SA, Soltani M, Najafizadeh P, Ebrahimi SA, Chen P. Biocompatible poymer microneedle for transdermal delivery of tranexamic acid. J Control Release. 2017;261:87-92

  34. Chou S, Woodrow KA. Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. J Mech Behav Biomed Mater. 2017;65:724–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Loizidou EZ, Inoue NT, Ashton-Barnett J, Barrow DA, Allender CJ. Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis. Eur J Pharm Biopharm. 2016;107:1–6.

    PubMed  Google Scholar 

  36. Gill HS, Denson DD, Burris BA, Prausnitz MR. Effect of microneedle design on pain in human volunteers. Clin J Pain. 2008;24(7):585–94.

    PubMed  PubMed Central  Google Scholar 

  37. Chen B, Wei J, Iliescu C. Sonophoretic enhanced microneedles array (SEMA)—improving the efficiency of transdermal drug delivery. Sensors Actuators B Chem. 2010;145(1):54–60.

    CAS  Google Scholar 

  38. Jung JH, Chiang B, Grossniklaus HE, Prausnitz MR. Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle. J Control Release. 2018;277:14–22. https://doi.org/10.1016/j.jconrel.2018.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zakrewsky M, Kumar S, Mitragotri S. Nucleic acid delivery into skin for the treatment of skin disease: proofs-of-concept, potential impact, and remaining challenges. J Control Release. 2015;219:445–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hauri A, Armstrong G, Hutin Y. The global burden of disease attributable to contaminated injections given in health care settings. Int J STD AIDS. 2004;15(1):7–16.

    PubMed  Google Scholar 

  41. Cohen BE, Elbuluk N. Microneedling in skin of color: a review of uses and efficacy. J Am Acad Dermatol. 2016;74(2):348–55. https://doi.org/10.1016/j.jaad.2015.09.024.

    Article  PubMed  Google Scholar 

  42. van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release. 2012;161(2):645–55. https://doi.org/10.1016/j.jconrel.2012.01.042.

    Article  CAS  PubMed  Google Scholar 

  43. Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56(5):581–7.

    CAS  PubMed  Google Scholar 

  44. Migdadi EM, Courtenay AJ, Tekko IA, et al. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J Control Release. 2018;285:142–51. https://doi.org/10.1016/j.jconrel.2018.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Choi CK, Lee KJ, Youn YN, et al. Spatially discrete thermal drawing of biodegradable microneedles for vascular drug delivery. Eur J Pharm Biopharm. 2013;83(2):224–33. https://doi.org/10.1016/j.ejpb.2012.10.020.

    Article  CAS  PubMed  Google Scholar 

  46. McGrath MG, Vucen S, Vrdoljak A, et al. Production of dissolvable microneedles using an atomised spray process: effect of microneedle composition on skin penetration. Eur J Pharm Biopharm. 2014;86(2):200–11.

    CAS  PubMed  Google Scholar 

  47. Lee JW, Park J, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29(13):2113–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Martanto W, Moore JS, Couse T, Prausnitz MR. Mechanism of fluid infusion during microneedle insertion and retraction. J Control Release. 2006;112(3):357–61.

    CAS  PubMed  Google Scholar 

  49. Roxhed N, Griss P, Stemme G. Membrane-sealed hollow microneedles and related administration schemes for transdermal drug delivery. Biomed Microdevices. 2008;10(2):271–9.

    CAS  PubMed  Google Scholar 

  50. Vinayakumar KB, Hegde GM, Nayak MM, Dinesh NS, Rajanna K. Fabrication and characterization of gold coated hollow silicon microneedle array for drug delivery. Microelectron Eng. 2014;128:12–8.

    CAS  Google Scholar 

  51. Lhernould MS, Deleers M, Delchambre A. Hollow polymer microneedles array resistance and insertion tests. Int J Pharm. 2015;480(1):152–7. https://doi.org/10.1016/j.ijpharm.2015.01.019.

    Article  CAS  PubMed  Google Scholar 

  52. Wang PM, Cornwell M, Hill J, Prausnitz MR. Precise microinjection into skin using hollow microneedles. J Invest Dermatol. 2006;126(5):1080–7.

    CAS  PubMed  Google Scholar 

  53. Ovsianikov A, Chichkov B, Mente P, Monteiro-Riviere NA, Doraiswamy A, Narayan RJ. Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery. Int J Appl Ceram Technol. 2007;4(1):22–9.

    CAS  Google Scholar 

  54. Matriano JA, Cormier M, Johnson J, et al. Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res. 2002;19:63–70.

    CAS  PubMed  Google Scholar 

  55. Chen Y, Chen BZ, Wang QL, Jin X, Guo XD. Fabrication of coated polymer microneedles for transdermal drug delivery. J Control Release. 2017;205:14-21

  56. McGrath MG, Vrdoljak A, O’Mahony C, Oliveira JC, Moore AC, Crean AM. Determination of parameters for successful spray coating of silicon microneedle arrays. Int J Pharm. 2011;415(1):140–9.

    CAS  PubMed  Google Scholar 

  57. Haj-Ahmad R, Khan H, Arshad M, et al. Microneedle coating techniques for transdermal drug delivery. Pharmaceutics. 2015;7(4):486–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Li X, Huang J, Ahmad Z, Edirisinghe M. Electrohydrodynamic coating of metal with nano-sized hydroxyapatite. Biomed Mater Eng. 2007;17(6):335–46.

    CAS  PubMed  Google Scholar 

  59. Ahmad Z, Nangrejo M, Edirisinghe M, Stride E, Colombo P, Zhang HB. Engineering a material for biomedical applications with electric field assisted processing. Appl Phys A-Mater Sci Process. 2009;97(1):31–7.

    CAS  Google Scholar 

  60. Rai P, Gautam N, Chandra H. An experimental approach of generation of micro/nano scale liquid droplets by electrohydrodynamic atomization (EHDA) process. Mater Today. 2017;4(2, Part A):611–20.

    Google Scholar 

  61. Hapgood K, Litster JD, Wang C. Pharmaceutical particles. Chem Eng Sci. 2015;125:1–3.

    CAS  Google Scholar 

  62. Ross S, Scoutaris N, Lamprou D, Mallinson D, Douroumis D. Inkjet printing of insulin microneedles for transdermal delivery. Drug Deliv Transl Res. 2015;5(4):451–61.

    CAS  PubMed  Google Scholar 

  63. Thakur RRS, Fallows SJ, McMillan HL, Donnelly RF, Jones DS. Microneedle-mediated intrascleral delivery of in situ forming thermoresponsive implants for sustained ocular drug delivery. J Pharm Pharmacol. 2014;66(4):584–95.

    CAS  PubMed  Google Scholar 

  64. Khandan O, Kahook MY, Rao MP. Fenestrated microneedles for ocular drug delivery. Sens Actuator B-Chem. 2016;223:15–23.

    CAS  Google Scholar 

  65. McConville A, Davis J. Transdermal microneedle sensor arrays based on palladium: polymer composites. Electrochem Commun. 2016;72:162–5.

    CAS  Google Scholar 

  66. Mukaibo H, Johnson EA, Mira F, et al. Template-synthesized gold microneedle arrays for gene delivery to the Chlamydomonas reinhardtii chloroplast. Mater Lett. 2015;141:76–8.

    CAS  Google Scholar 

  67. Sergi PN, Jensen W, Yoshida K. Interactions among biotic and abiotic factors affect the reliability of tungsten microneedles puncturing in vitro and in vivo peripheral nerves: a hybrid computational approach. Mater Sci Eng C. 2016;59:1089–99.

    CAS  Google Scholar 

  68. Khan H, Mehta P, Msallam H, Armitage D, Ahmad Z. Smart microneedle coatings for controlled delivery and biomedical analysis. J Drug Target. 2014;22(9):790–5.

    CAS  PubMed  Google Scholar 

  69. Koutsonanos DG, del Pilar MM, Zarnitsyn VG, et al. Transdermal influenza immunization with vaccine-coated microneedle arrays. PLoS One. 2009;4(3):e4773.

    PubMed  PubMed Central  Google Scholar 

  70. Tsuchiya K, Jinnin S, Yamamoto H, Uetsuji Y, Nakamachi E. Design and development of a biocompatible painless microneedle by the ion sputtering deposition method. Precis Eng -J Int Soc Precis Eng Nanotechnol. 2010;34(3):461–6.

    Google Scholar 

  71. Chen Z, Ren L, Li J, et al. Rapid fabrication of microneedles using magnetorheological drawing lithography. Acta Biomater. 2018;65:283–91.

    PubMed  Google Scholar 

  72. Dangol M, Yang H, Li CG, et al. Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles. J Control Release. 2016;223:118–25.

    CAS  PubMed  Google Scholar 

  73. Amodwala S, Kumar P, Thakkar HP. Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: a patient friendly approach to manage arthritis. Eur J Pharm Sci. 2017;104:114–23.

    CAS  PubMed  Google Scholar 

  74. Zhu DD, Chen BZ, He MC, Guo XD. Structural optimization of rapidly separating microneedles for efficient drug delivery. J Ind Eng Chem. 2017;51:178–84.

    CAS  Google Scholar 

  75. Choi S, Kim YC, Park J, et al. An electrically active microneedle array for electroporation. Biomed Microdevices. 2010;12(2):263–73.

    PubMed  PubMed Central  Google Scholar 

  76. Hegarty C, McConville A, McGlynn RJ, Mariotti D, Davis J. Design of composite microneedle sensor systems for the measurement of transdermal pH. Mater Chem Phys. 2019;227:340–6. https://doi.org/10.1016/j.matchemphys.2019.01.052.

    Article  CAS  Google Scholar 

  77. Caffarel-Salvador E, Tuan-Mahmood T, McElnay JC, et al. Potential of hydrogel-forming and dissolving microneedles for use in paediatric populations. Int J Pharm. 2015;489(1-2):158–69.

    CAS  PubMed  Google Scholar 

  78. Park J, Prausnitz MR. Analysis of the mechanical failure of polymer microneedles by axial force. J Korean Phys Soc. 2010;56(4):1223–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu W, Jiang G, Zhang Y, Liu D, Xu B, Zhou J. Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Mater Sci Eng C. 2017;80:187–96. https://doi.org/10.1016/j.msec.2017.05.143.

    Article  CAS  Google Scholar 

  80. Monkare J, Nejadnik MR, Baccouche K, Romeijn S, Jiskoot W, Bouwstra JA. IgG-loaded hyaluronan-based dissolving microneedles for intradermal protein delivery. J Control Release. 2015;218:53–62.

    PubMed  Google Scholar 

  81. Yang J, Liu X, Fu Y, Song Y. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm Sin B. 2019;9(3):469–83. https://doi.org/10.1016/j.apsb.2019.03.007.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chen M, Lin Z, Ling M. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano. 2016;10(1):93–101.

    CAS  PubMed  Google Scholar 

  83. Hong X, Wu Z, Chen L, Wu F, Wei L, Yuan W. Hydrogel microneedle arrays for transdermal drug delivery. Nano-Micro Lett. 2014;6(3):191–9.

    CAS  Google Scholar 

  84. Eltayib E, Brady AJ, Caffarel-Salvador E, et al. Hydrogel-forming microneedle arrays: potential for use in minimally-invasive lithium monitoring. Eur J Pharm Biopharm. 2016;102:123–31.

    CAS  PubMed  Google Scholar 

  85. Indermun S, Choonara YE, Kumar P, et al. In vitro and in vivo evaluation of a hydrogel-based microneedle device for transdermal electro-modulated analgesia. J Pharm Sci. 2017;106(4):1111–6.

    CAS  PubMed  Google Scholar 

  86. Caliò A, Dardano P, Di Palma V, et al. Polymeric microneedles based enzymatic electrodes for electrochemical biosensing of glucose and lactic acid. Sensors Actuators B Chem. 2016;236:343–9.

    Google Scholar 

  87. Donnelly RF, Morrow DIJ, Singh TRR, et al. Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev Ind Pharm. 2009;35(10):1242–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bouras N, Madjoubi MA, Kolli M, Benterki S, Hamidouche M. Thermal and mechanical characterization of borosilicate glass. Phys Procedia. 2009;2(3):1135–40.

    CAS  Google Scholar 

  89. Lee S, Jeong W, Beebe D. Microfluidic valve with cored glass microneedle for microinjection. Lab Chip. 2003;3(3):164–7.

    CAS  PubMed  Google Scholar 

  90. Yu W, Jiang G, Liu D, et al. Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite. Mater Sci Eng C. 2017;73:425–8.

    CAS  Google Scholar 

  91. Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10(3):118.

    CAS  PubMed Central  Google Scholar 

  92. Mahony D, Cavallaro AS, Stahr F, Mahony TJ, Qiao SZ, Mitter N. Mesoporous silica nanoparticles act as a self-adjuvant for ovalbumin model antigen in mice. Small. 2013;9(18):3138–46.

    CAS  PubMed  Google Scholar 

  93. Kennedy J, Larrañeta E, McCrudden MTC, et al. In vivo studies investigating biodistribution of nanoparticle-encapsulated rhodamine B delivered via dissolving microneedles. J Control Release. 2017;265:57–65. https://doi.org/10.1016/j.jconrel.2017.04.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Poon THY. Zeolite microneedles: fabrication, mechanics and transdermal drug delivery. [M.Phil]. Honk Kong: The Honk Kong University of Science and Technology; 2013.

  95. Ruggiero F, Vecchione R, Bhowmick S, et al. Electro-drawn polymer microneedle arrays with controlled shape and dimension. Sensors Actuators B Chem. 2018;255:1553–60. https://doi.org/10.1016/j.snb.2017.08.165.

    Article  CAS  Google Scholar 

  96. Wang QL, Zhu DD, Chen Y, Guo XD. A fabrication method of microneedle molds with controlled microstructures. Mater Sci Eng C. 2016;65:135–42. https://doi.org/10.1016/j.msec.2016.03.097.

    Article  CAS  Google Scholar 

  97. Wang R, Wang W, Li Z. An improved manufacturing approach for discrete silicon microneedle arrays with tunable height-pitch ratio. Sensors. 2016;16(10):1628.

    PubMed Central  Google Scholar 

  98. Lee J, Park SH, Seo IH, Lee KJ, Ryu W. Rapid and repeatable fabrication of high A/R silk fibroin microneedles using thermally-drawn micromolds. Eur J Pharm Biopharm. 2015;94:11–9. https://doi.org/10.1016/j.ejpb.2015.04.024.

    Article  CAS  PubMed  Google Scholar 

  99. Indermun S, Luttge R, Choonara YE, et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release. 2014;185:130–8. https://doi.org/10.1016/j.jconrel.2014.04.052.

    Article  CAS  PubMed  Google Scholar 

  100. Xenikakis I, Tzimtzimis M, Tsongas K, et al. Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro. Eur J Pharm Sci. 2019;137:104976. https://doi.org/10.1016/j.ejps.2019.104976.

    Article  CAS  PubMed  Google Scholar 

  101. Kim JD, Kim M, Yang H, Lee K, Jung H. Droplet-born air blowing: novel dissolving microneedle fabrication. J Control Release. 2013;170(3):430–6. https://doi.org/10.1016/j.jconrel.2013.05.026.

    Article  CAS  PubMed  Google Scholar 

  102. Huh I, Kim S, Yang H, Jang M, Kang G, Jung H. Effects of two droplet-based dissolving microneedle manufacturing methods on the activity of encapsulated epidermal growth factor and ascorbic acid. Eur J Pharm Sci. 2018;114:285–92. https://doi.org/10.1016/j.ejps.2017.12.025.

    Article  CAS  PubMed  Google Scholar 

  103. Kim JH, Shin JU, Kim SH, et al. Successful transdermal allergen delivery and allergen-specific immunotherapy using biodegradable microneedle patches. Biomaterials. 2018;150:38–48. https://doi.org/10.1016/j.biomaterials.2017.10.013.

    Article  CAS  PubMed  Google Scholar 

  104. Wang R, Jiang X, Wang W, Li Z. A microneedle electrode array on flexible substrate for long-term EEG monitoring. Sensors Actuators B Chem. 2017;244:750–8. https://doi.org/10.1016/j.snb.2017.01.052.

    Article  CAS  Google Scholar 

  105. Pere CPP, Economidou SN, Lall G, et al. 3D printed microneedles for insulin skin delivery. Int J Pharm. 2018. https://doi.org/10.1016/j.ijpharm.2018.03.031.

  106. Ren L, Jiang Q, Chen Z, et al. Flexible microneedle array electrode using magnetorheological drawing lithography for bio-signal monitoring. Sensors Actuators A Phys. 2017;268:38–45. https://doi.org/10.1016/j.sna.2017.10.042.

    Article  CAS  Google Scholar 

  107. Ronnander P, Simon L, Spilgies H, Koch A, Scherr S. Dissolving polyvinylpyrrolidone-based microneedle systems for in-vitro delivery of sumatriptan succinate. Eur J Pharm Sci. 2018;114:84–92. https://doi.org/10.1016/j.ejps.2017.11.031.

    Article  CAS  PubMed  Google Scholar 

  108. Ripolin A, Quinn J, Larraneta E, Vicente-Perez EM, Barry J, Donnelly RF. Successful application of large microneedle patches by human volunteers. Int J Pharm. 2017;521(1-2):92–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Stavrinidis G, Michelakis K, Kontomitrou V, et al. SU-8 microneedles based dry electrodes for electroencephalogram. Microelectron Eng. 2016;159:114–20. https://doi.org/10.1016/j.mee.2016.02.062.

    Article  CAS  Google Scholar 

  110. Baek C, Han M, Min J, Prausnitz MR, Park J, Park JH. Local transdermal delivery of phenylephrine to the anal sphincter muscle using microneedles. J Control Release. 2011;154(2):138–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhao X, Birchall JC, Coulman SA, et al. Microneedle delivery of autoantigen for immunotherapy in type 1 diabetes. J Control Release. 2016;223:178–87. https://doi.org/10.1016/j.jconrel.2015.12.040.

    Article  CAS  PubMed  Google Scholar 

  112. Jung M, An JY, Park Y, Yang S, Lee J. A movable polymeric microneedle array actuated by thermopneumatic force. Sensors Actuators A Phys. 2016;237:128–35. https://doi.org/10.1016/j.sna.2015.12.002.

    Article  CAS  Google Scholar 

  113. Márquez-Graña C, Bryan K, Vucen S, O’Sullivan C. Development of a novel single-use microneedle design platform for increased patient compliance. Procedia Manufacturing. 2017;13:1352–9. https://doi.org/10.1016/j.promfg.2017.09.114.

    Article  Google Scholar 

  114. Yao G, Quan G, Lin S, et al. Novel dissolving microneedles for enhanced transdermal delivery of levonorgestrel: in vitro and in vivo characterization. Int J Pharm. 2017;534(1):378–86. https://doi.org/10.1016/j.ijpharm.2017.10.035.

    Article  CAS  PubMed  Google Scholar 

  115. Wang QL, Zhang XP, Chen BZ, Guo XD. Dissolvable layered microneedles with core-shell structures for transdermal drug delivery. Mater Sci Eng C. 2018;83:143–7. https://doi.org/10.1016/j.msec.2017.11.009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Ahmad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, R., Mehta, P., Arshad, M. et al. Transdermal Microneedles—A Materials Perspective. AAPS PharmSciTech 21, 12 (2020). https://doi.org/10.1208/s12249-019-1560-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1560-3

KEY WORDS

Navigation