Skip to main content

Advertisement

Log in

Anti-HPV Nanoemulsified-Imiquimod: A New and Potent Formulation to Treat Cervical Cancer

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Cervical cancer is associated with the human papilloma virus (HPV) and nowadays is the fourth most frequent cancer among women. One of the treatments for this disease is based on the application of imiquimod. In this study, we postulated that the use of imiquimod in nanoemulsion results in a better antitumoral effect than the drug administered in its nonencapsulated form for the treatment of cervical cancer. Permeability studies using vaginal mucosa, as membrane, and in vitro studies involving cervical cancer cells (viability, clonogenic assay, and cell death analysis) were performed. We showed that low amount of encapsulated imiquimod permeated the vaginal mucosa. However, a higher percentage of cells died after the treatment with low amount (3.0 μmol L−1) of the formulation compared to the free drug. In addition, the innovative formulation presented a combinatory mechanism of cell death involving autophagy and apoptosis. Our results demonstrate that the imiquimod-loaded nanoemulsioncan be an alternative product for the treatment of cervical cancer validating the hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thuler LCS. Mortalidade por câncer do colo do útero no Brasil. Rev Bras Ginecol Obstet. 2008;30(5):216–8.

    PubMed  Google Scholar 

  2. Ayres AR, Silva GA. Prevalência de infecção do colo do útero pelo HPV no Brasil: revisão sistemática. Rev Saúde Pública. 2010;44(5):963–74.

    PubMed  Google Scholar 

  3. Pinotti JA, Ricci MD. Panorama do HPV no Brasil e no Mercosul. In: Lucon AM, Pereyra AG, Rosenblatt C, Roger E, editors. HPV na prática clínica. São Paulo: Atheneu; 2005. p. 263–73.

    Google Scholar 

  4. Kreuter A, Potthoff A, Brockmeyer NH. Imiquimod leads to a decrease of human papillomavirus DNA and to a sustained clearance of anal intraepithelial neoplasia in HIV-infected men. J Invest Dermatol. 2008;128:2078–83.

    CAS  PubMed  Google Scholar 

  5. Tyring SK, Arany I, Stanley MA. A randomized, controlled, molecular study of condylomata acuminata and clearance during treatment with imiquimod. J Infect Dis. 1998;178:511–55.

    Google Scholar 

  6. Brown CW, O’Donoghue M, Moore J. Recalcitrant molluscum contagiosum in an HIV-afflicted male treated successfully with topical imiquimod. Cutis. 2000;65:363–6.

    PubMed  Google Scholar 

  7. Christensen B, Hengge UR. Recurrent urogenital herpes simplex—successful treatment with imiquimod? Sex Transm Infect. 1999;75:132–3.

    CAS  PubMed  Google Scholar 

  8. Dahl MV. Imiquimod: an immune response modifier. J Am Acad Dermatol. 2000;43(1):S1–5.

    CAS  PubMed  Google Scholar 

  9. Miller RL, Gerster JF, Owens ML, Slade HB, Tomai MA. Review article imiquimod applied topically: a novel immune response modifier and new class of drug. Int J Immunopharmacol. 1999;21(1):1–14.

    CAS  PubMed  Google Scholar 

  10. Wieland U, Brockmeyer NH, Weissenborn SJ. Imiquimod treatment of anal intraepithelial neoplasia in HIV-positive men. Arch Dermatol. 2006;142:1438–44.

    CAS  PubMed  Google Scholar 

  11. Frank LA, Gazzi RP, Mello P, Buffon A, Pohlmann AR, Guterres SS. Imiquimod-loaded nanocapsules improve cytotoxicity in cervical cancer cell line. Eur J Pharm Biopharm. 2019;136:9–17.

    CAS  PubMed  Google Scholar 

  12. Wang M, Thanou M. Targeting nanoparticles to cancer. Pharm Res. 2010;62(2):90–9.

    CAS  Google Scholar 

  13. Venturini CG, Bruinsmann FA, Contri RV, Fonseca FN, Frank LA, D’Amore CM, et al. Co-encapsulation of imiquimod and copaiba oil in novel nanostructured systems: promising formulations against skin carcinoma. Pharm Sci. 2015;79:36–43.

    CAS  Google Scholar 

  14. Contri RV, Frank LA, Kaiser M, Pohlmann AR, Guterres SS. The use of nanoencapsulation to decrease human skin irritation caused by capsaicinoids. Int J Nanomedicine. 2014;9:951–62.

    PubMed  PubMed Central  Google Scholar 

  15. Bernardi A, Braganhol E, Jäger E, Figueiró F, Edelweiss MI, Pohlmann AR, et al. Indomethacin-loaded nanocapsules treatment reduces in vivoglioblastoma growth in a rat glioma model. Cancer Lett. 2009;28:53–63.

    Google Scholar 

  16. Shah P, Bhalodia D, Shelat P. Nanoemulsion: a pharmaceutical review. Syst Rev Pharm. 2010;1(1):24–32.

    CAS  Google Scholar 

  17. Severino P, Fangueiro JF, Ferreira SV, Basso R, Chaud MV, Santana MHA, et al. Nanoemulsions and nanoparticles for non-melanoma skin cancer: effects of lipid materials. Clin Transl Oncol. 2013;15(6):417–24.

    CAS  PubMed  Google Scholar 

  18. Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Adv Colloid Interf Sci. 2004;108-109:303–18.

    CAS  Google Scholar 

  19. Vanic E, Basnet NS. Nanopharmaceuticals for improved topical vaginal therapy: can they deliver? Eur J Pharm Sci. 2013;50:29–41.

    CAS  PubMed  Google Scholar 

  20. Benita S, Levy MY. Submicron emulsions as colloidal drug carriers for intravenous administration: comprehensive physicochemical characterization. J Pharm Sci. 1993;82(11):1069–79.

    CAS  PubMed  Google Scholar 

  21. D’Cruz OJ, Uckun FM. Gel-microemulsions as vaginal spermicides and intravaginal drug delivery vehicles. Contraception. 2001;64:113–23.

    PubMed  Google Scholar 

  22. Kaur A, Katiyar SS, Kushwah V, Jain S. Nanoemulsion loaded gel for topical co-delivery of clobetasol propionate and calcipotriol in psoriasis. Nanomed: Nanotechnol Biol Med. 2017;13:1473–82.

    CAS  Google Scholar 

  23. Bachhav YG, Patravale VB. Microemulsion-based vaginal gel of clotrimazole: formulation, in vitro evaluation, and stability studies. AAPS PharmSciTech. 2009;10(2):476–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kakumanu S, Tagne JB, Wilson TA, Nicolosi RJ. A nanoemulsion formulation of dacarbazine reduces tumor size in a xenograft mouse epidermoid carcinoma model compared to dacarbazine suspension. Nanomedicine. 2011;7(3):277–83.

    CAS  PubMed  Google Scholar 

  25. Tagne JB, Kakumanu S, Nicolosi RJ. Nanoemulsion preparations of the anticancer drug dacarbazine significantly increase its efficacy in a xenograft mouse melanoma model. Mol Pharm. 2008;5(6):1055–63.

    CAS  PubMed  Google Scholar 

  26. Frank LA, Chaves PS, D’Amore CM, Contri RV, Frank AG, Beck RCR, et al. The use of chitosan as cationic coating or gel vehicle for polymeric nanocapsules: increasing penetration and adhesion of imiquimod in vaginal tissue. Eur J Pharm Biopharm. 2017;114:202–12.

    CAS  PubMed  Google Scholar 

  27. Katzer T, Chaves P, Bernardi A, Pohlmann AR, Guterres SS, Beck RCR. Castor oil and mineral oil nanoemulsion: development and compatibility with a soft contact lens. Pharm Dev Technol. 2014;19(2):232–7.

    CAS  PubMed  Google Scholar 

  28. De Paula DD, Martins AC, Bentley MV. Development and validation of HPLC method for imiquimod determination in skin penetration studies. Biomed Chromatogr. 2008;22:1416–23.

    PubMed  Google Scholar 

  29. Valenta C. The use of mucoadhesive polymers in vaginal delivery. Adv Drug Deliv Rev. 2005;57:1692–712.

    CAS  PubMed  Google Scholar 

  30. Frank LA, Sandri G, D’Autilia F, Contri RV, Bonferoni MC, Caramella C, et al. Chitosan gel containing polymeric nanocapsules: a new formulation for vaginal drug delivery. Int J Nanomedicine. 2014;9:3151–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Paese K, Ortiz M, Frank LA, Külkamp-Guerreiro IC, Rolim CM, Barros DM, et al. Production of isotonic, sterile, and kinetically stable lipid-core nanocapsules for injectable administration. AAPS PharmSciTech. 2017;18(1):212–23.

    CAS  PubMed  Google Scholar 

  32. Franken NAP, Rodermond HM, Stap J, Haveman J, Van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.

    CAS  PubMed  Google Scholar 

  33. Mello PA, Filippi-Chiela EC, Nascimento J, Beckenkamp A, Santana DB, Kipper F, et al. Adenosine uptake is the major effector of extracellular ATP toxicity in human cervical cancer cells. Mol Biol Cell. 2014;25:2905–18.

    PubMed Central  Google Scholar 

  34. Jäger E, Venturini CG, Poletto FS, Colomé LM, Pohlmann JP, Bernardi A, et al. Sustained release from lipid-core nanocapsules by varying the core viscosity and the particle surface area. J Biomed Nanotechnol. 2009;5(1):130–40.

    PubMed  Google Scholar 

  35. Chaves PS, Ourique AF, Frank LA, Pohlmann AR, Guterres SS, Beck RCR. Carvedilol-loaded nanocapsules: mucoadhesive properties and permeability across the sublingual mucosa. Eur J Pharm Biopharm. 2017;114:88–95.

    CAS  PubMed  Google Scholar 

  36. Kong M, Chen XG, Kweon DK, Park HJ. Investigations on skin permeation of hyaluronic acid based nanoemulsion as transdermal carrier. Carbohydr Polym. 2011;86(2):837–43.

    CAS  Google Scholar 

  37. Mirza MA, Ahmad S, Mallick MN, Manzoor N, Talegaonkar S, Iqbal Z. Development of a novel synergistic thermosensitive gel for vaginal candidiasis: an in vitro, in vivo evaluation. Colloids Surf B: Biointerfaces. 2013;103:275–82.

    CAS  PubMed  Google Scholar 

  38. Gupta AK, Browne M, Bluhm R. Imiquimod: A review. J Cutan Med Surg. 2002;6:554–60.

    PubMed  Google Scholar 

  39. Desai A, Vyas T, Amiji M. Cytotoxicity and apoptosis enhancement in brain tumor cells upon coadministration of paclitaxel and ceramide in nanoemulsion formulations. J Pharm Sci. 2008;97(7):2745–56.

    CAS  PubMed  Google Scholar 

  40. Ganta S, Amiji M. Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm. 2009;6(3):928–39.

    CAS  PubMed  Google Scholar 

  41. Han J, Lee J, Jeon S, Choi E, Cho S, Kim B, et al. In vitro and in vivo growth inhibition of prostate cancer by the small molecule imiquimod. Int J Oncol. 2013;42:2087–93.

    CAS  PubMed  Google Scholar 

  42. Sohn KC, Li ZJ, Choi DK, Zhang T, Lim JW, Chang IK, et al. Imiquimod induces apoptosis of squamous cell carcinoma (SCC) cells via regulation of A20. PLoSOne. 2014;9(4):e95337.

    Google Scholar 

  43. Huang S, Chang S, Mu S, Jiang H, Wang S, Kao J, et al. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line. J Dermatol Sci. 2016;81:182–19.

    CAS  PubMed  Google Scholar 

  44. Wang S, Huang S, Kao J, Liang S, Chen Y, Chen Y, et al. Imiquimod-induced AMPK activation causes translation attenuation and apoptosis but not autophagy. J Dermatol Sci. 2015;78:108–16.

    CAS  PubMed  Google Scholar 

  45. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy. 2008;4:151–75.

    CAS  PubMed  Google Scholar 

  46. He C, Klionsky DJ. Regulation Mechanisms and Signaling Pathways of Autophagy. Annu Ver Genet. 2009;43:67–93.

    CAS  Google Scholar 

  47. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhi X, Zhong Q. Autophagy in cancer. F1000Prime Rep. 2015;7:1–12.

    Google Scholar 

Download references

Funding

The authors thank the financial support of the following Brazilian agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); INCT-NANOFARMA (FAPESP, Brazil) Grant #2014/50928-2 and INCT-NANOFARMA (CNPq, Brazil) Grant # 465687/2014-8; PRONEX FAPERGS/CNPq 12/2014 – Grant 16/2551-0000467-6; and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Post-Doc scholarship to the author P.A.M, Procad-CAPES, Edital n 071/2013-15819; CNPq Grants to A.R.P. ad S.S.G.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luiza Abrahão Frank or Silvia S. Guterres.

Ethics declarations

Conflict of Interest

The authors report no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, L.A., Gazzi, R.P., Mello, P.A. et al. Anti-HPV Nanoemulsified-Imiquimod: A New and Potent Formulation to Treat Cervical Cancer. AAPS PharmSciTech 21, 54 (2020). https://doi.org/10.1208/s12249-019-1558-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1558-x

KEY WORDS

Navigation