Skip to main content
Log in

Orphan Formulations in Pediatric Schistosomiasis Treatment: Development and Characterization of Praziquantel Nanoparticle—Loaded Powders for Reconstitution

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Praziquantel is a broad spectrum antihelmintic agent and represents the drug of choice for the treatment of schistosomiasis. However, its low aqueous solubility and strong bitter taste highly affect the bioavailability and compliance in pediatric patients. Thus, the purpose of this study was to develop a dry nanosuspension, by a combination of high-pressure homogenization and spray drying, intended for redispersion in a pleasant taste vehicle for extemporaneous use. Three formulations, varying stabilizers to drug ratio, were developed and characterized in terms of particle size distribution, crystallinity, morphology, in vitro dissolution, and sedimentation-redispersibility behavior. A significant reduction in particle size was achieved after the high-pressure homogenization process, and the nanoparticles were further microencapsulated by spray drying technique. The redispersed dried powders exhibited a conserved particle size distribution (in the nanometric range) and certain crystallinity extent, with satisfactory redispersion ability. Besides, the enhancement of the dissolution performance obtained after comminution was conserved, even after drying and redispersion of the extemporaneous powdered formulation. In conclusion, the developed nanoparticle-loaded powders comprise an interesting tool for the administration of praziquantel to preschool-age children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. WHO, World Health Organization. Schistosomiasis, Disease. https://www.who.int/schistosomiasis/disease/en/. Accessed 9th May 2019.

  2. WHO Schistosomiasis Fact Sheet. https://www.who.int/en/news-room/fact-sheets/detail/schistosomiasis. Accessed 9th May 2019

  3. World Health Organization. Report of a meeting to review the results of studies on the treatment of Schistosomiasis in preschool-age children. Geneva, Switzerland, 2010. Available: https://apps.who.int/iris/bitstream/handle/10665/44639/9789241501880_eng.pdf?sequence=1. Accessed 9th May 2019.

  4. WHO. Model list of essential medicines. 20th ed. Geneva: World Health Organization; 2017. Available in: https://apps.who.int/iris/bitstream/handle/10665/273826/EML-20-eng.pdf?ua=1. Accessed 9th May 2019

    Google Scholar 

  5. Fenwick A, Webster JP, Bosque-Oliva E, Blair L, Fleming FM, Zhang Y, et al. The Schistosomiasis Control Initiative (SCI): rationale, development and implementation from 2002–2008. Parasitology 2009. 136(13):1719–30. https://doi.org/10.1017/S0031182009990400.

    Article  CAS  PubMed  Google Scholar 

  6. Patzschke K, Putter J, Wegner LA, Horster FA, Diekmann HW. Serum concentrations and renal excretion in humans after oral administration of praziquantel - results of three determination methods. Eur J Drug Metab Pharmacokinet. 1979;4(3):149–56. https://doi.org/10.1007/BF03189418.

    Article  CAS  PubMed  Google Scholar 

  7. Trastullo R, Dolci LS, Passerini N, Albertini B. Development of flexible and dispersible oral formulations containing praziquantel for potential schistosomiasis treatment of pre-school age children. Int J Pharm. 2015;495(1):536–50. https://doi.org/10.1016/j.ijpharm.2015.09.019.

    Article  CAS  PubMed  Google Scholar 

  8. WHO. World Health Organization. Schistosomiasis. Strategy; 2016. http://www.who.int/schistosomiasis/strategy/en/. Accessed 9th May 2019.

  9. Pediatric Praziquantel Consortium. https://www.pediatricpraziquantelconsortium.org/schistosomiasis. Accessed 9th May 2019.

  10. Münster M, Mohamed-Ahmed AH, Immohr LI, Schoch C, Schmidt C, Tuleu C, et al. Comparative in vitro and in vivo taste assessment of liquid praziquantel formulations. Int J Pharm. 2017;529(1-2):310–8. https://doi.org/10.1016/j.ijpharm.2017.06.084.

    Article  CAS  PubMed  Google Scholar 

  11. Passerini N, Albertini B, Perissutti B, Rodriguez L. Evaluation of melt granulation and ultrasonic spray congealing as techniques to enhance the dissolution of praziquantel. Int J Pharm. 2006;318(1-2):92–102. https://doi.org/10.1016/j.ijpharm.2006.03.028.

    Article  CAS  PubMed  Google Scholar 

  12. González-Esquivel D, Rivera J, Castro N, Yepez-Mulia L, Helgi JC. In vitro characterization of some biopharmaceutical properties of praziquantel. Int J Pharm. 2005;295(1-2):93–9. https://doi.org/10.1016/j.ijpharm.2005.01.033.

    Article  CAS  PubMed  Google Scholar 

  13. Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58(2):265–78. https://doi.org/10.1016/j.ejpb.2004.03.001.

    Article  PubMed  Google Scholar 

  14. Shawahna R. Pediatric biopharmaceutical classification system: using age-appropriate initial gastric volume. AAPS J. 2016;18(3):728–36. https://doi.org/10.1208/s12248-016-9885-2.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47(1):3–19. https://doi.org/10.1016/S0169-409X(00)00118-6.

    Article  PubMed  Google Scholar 

  16. Zhou Y, Fang Q, Niu B, Wu B, Zhao Y, Quan G, et al. Comparative studies on amphotericin B nanosuspensions prepared by a high pressure homogenization method and an antisolvent precipitation method. Colloid Surf B Biointerfaces. 2018;172:372–9. https://doi.org/10.1016/j.colsurfb.2018.08.016.

    Article  CAS  PubMed  Google Scholar 

  17. Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19(12):930–4. https://doi.org/10.1021/ja02086a00.

    Article  Google Scholar 

  18. Lakshmi P, Kumar GA. Nanosuspension technology: a review. Int J Pharm Sci. 2010;2(4):35–40.

    Google Scholar 

  19. Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high-pressure homogenization. Eur J Pharm Biopharm. 2006;62(1):3–16. https://doi.org/10.1016/j.ejpb.2005.05.009.

    Article  CAS  PubMed  Google Scholar 

  20. Foglio Bonda A, Rinaldi M, Segale L, Palugan L, Cerea M, Vecchio C, et al. Nanonized itraconazole powders for extemporary oral suspensions: role of formulation components studied by a mixture design. Eur J Pharm Sci. 2016;83:175–83. https://doi.org/10.1016/j.ejps.2015.12.030.

    Article  CAS  PubMed  Google Scholar 

  21. Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011;63(6):456–69. https://doi.org/10.1016/j.addr.2011.02.001.

    Article  CAS  PubMed  Google Scholar 

  22. Kumar S, Gokhale R, Burgess DJ. Quality by design approach to spray drying processing of crystalline nanosuspensions. Int J Pharm. 2014;464(1-2):234–42. https://doi.org/10.1016/j.ijpharm.2013.12.039.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Guan J, Ni R, Li LC, Mao S. Preparation and solidification of redispersible nanosuspensions. J Pharm Sci. 2014;103(7):2166–76. https://doi.org/10.1002/jps.24015.

    Article  CAS  PubMed  Google Scholar 

  24. Chaubal MV, Popescu C. Conversion of nanosuspensions into dry powders by spray drying: a case study. Pharm Res. 2008;25(10):2302–8. https://doi.org/10.1007/s11095-008-9625-0.

    Article  CAS  PubMed  Google Scholar 

  25. Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;364(1):64–75. https://doi.org/10.1016/j.ijpharm.2008.07.023.

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez MA, Ramírez-Rigo MV, Gonzalez Vidal NG. Praziquantel systems with improved dissolution rate obtained by high pressure homogenization. Mater Sci Eng C Mater. 2018;93:28–35. https://doi.org/10.1016/j.msec.2018.07.050.

    Article  CAS  Google Scholar 

  27. Paredes AJ, Llabot JM, Sanchez Bruni S, Allemandi D, Palma SD. Self-dispersible nanocrystals of albendazole produced by high pressure homogenization and spray-drying. Drug Dev Ind Pharm. 2016;42(10):1564–70. https://doi.org/10.3109/03639045.2016.1151036.

    Article  PubMed  Google Scholar 

  28. Hecq J, Deleers M, Fanara D, Vranckx H, Amighi K. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int J Pharm. 2005;299(1-2):167–77. https://doi.org/10.1016/j.ijpharm.2005.05.014.

    Article  CAS  PubMed  Google Scholar 

  29. Münster M, Schoch C, Schmidt C, Breitkreutz J. Multiparticulate system combining taste masking and immediate release properties for the aversive compound praziquantel. Eur J Pharm Sci. 2017;109:446–54. https://doi.org/10.1016/j.ejps.2017.08.034.

    Article  CAS  PubMed  Google Scholar 

  30. Campbell GA, Vallejo E. Primary packaging considerations in developing medicines for children: oral liquid and powder for constitution. J Pharm Sci. 2015;104:52–62. https://doi.org/10.1002/jps.24223.

    Article  CAS  PubMed  Google Scholar 

  31. Strickley RG. Pediatric oral formulations: an updated review of commercially available pediatric oral formulations since 2007. J Pharm Sci. 2019;108(4):1335–65. https://doi.org/10.1016/j.xphs.2018.11.013.

    Article  CAS  PubMed  Google Scholar 

  32. Safety & Toxicity of Exciíents for Paediatrics Database (STEP Database). Available in: http://www.eupfi.org/step-database-info/. Accessed August 10th, 2019

  33. Nahata MC, Morosco RS, Brady MT. Extemporaneous sildenafil citrate oral suspensions for the treatment of pulmonary hypertension in children. Am J Health Syst Pharm. 2006;63(3):254–7. https://doi.org/10.2146/ajhp050208.

    Article  CAS  PubMed  Google Scholar 

  34. Skillman KL, Caruthers RL, Johnson CE. Stability of an extemporaneously prepared clopidogrel oral suspension. Am J Health Syst Pharm. 2010;67(7):559–61. https://doi.org/10.2146/ajhp090163.

    Article  CAS  PubMed  Google Scholar 

  35. Helin-Tanninen M, Autio K, Keski-Rahkonen P, Naaranlahti T, Järvinen K. Comparison of six different suspension vehicles in compounding of oral extemporaneous nifedipine suspension for paediatric patients. Eur J Hosp Pharm. 2012;19:432–7. https://doi.org/10.1136/ejhpharm-2012-000159.

    Article  Google Scholar 

  36. Calcagno AJ, Palma SD, Cabrera F, Ramírez-Rigo MV, Piña J. Meloxicam-Poloxamer solid dispersions by spray drying. Poster presentation. 3° Reunión Internacional de Ciencias Farmacéuticas (RICiFa 2014) Córdoba, Argentina, 2014.

  37. Farmacotecnia, boletín informativo. Sociedad Española de Farmacia Hospitalaria. España; 2014. Available in: https://gruposdetrabajo.sefh.es/farmacotecnia/images/stories/Boletines/BOLETIN32014final.pdf. Accessed 9th May 2019

  38. Haywood A, Glass BD. Liquid dosage forms extemporaneously prepared from commercially available products–considering new evidence on stability. J Pharm Pharm Sci. 2013;16(3):441–55. https://doi.org/10.18433/J38887.

    Article  PubMed  Google Scholar 

  39. Palazzo F, Giovagnoli S, Schoubben A, Blasi P, Rossi C, Ricci M. Development of a spray-drying method for the formulation of respirable microparticles containing ofloxacin–palladium complex. Int J Pharm. 2013;440(2):273–82. https://doi.org/10.1016/j.ijpharm.2012.05.045.

    Article  CAS  PubMed  Google Scholar 

  40. Di Battista CA, Constenla D, Ramírez-Rigo MV, Piña J. The use of arabic gum, maltodextrin and surfactants in the microencapsulation of phytosterols by spray drying. Powder Technol. 2015;286:193–201. https://doi.org/10.1016/j.powtec.2015.08.016.

    Article  CAS  Google Scholar 

  41. Argentine Pharmacopeia, 7th Ed; Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT): Buenos Aires, Argentina; 2013.

  42. The United States Pharmacopoeia and National Formulary. USP 41-NF 36. Rockville: The United States Pharmacopoeial Convention, Inc.; 2018.

    Google Scholar 

  43. De la Torre P, Torrado S, Torrado S. Preparation, dissolution and characterization of praziquantel solid dispersions. Chem Pharm Bull. 1999;47(11):1629–33. https://doi.org/10.1248/cpb.47.1629.

    Article  Google Scholar 

  44. Khan KA. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27(1):48–9. https://doi.org/10.1111/j.2042-7158.1975.tb09378.x.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71. https://doi.org/10.1208/s12248-010-9185-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33. https://doi.org/10.1016/S0928-0987(01)00095-1.

    Article  CAS  PubMed  Google Scholar 

  47. Mengual O, Meunier G, Cayré I, Puech K, Snabre P. TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis. Talanta. 1999;50(2):445–56. https://doi.org/10.1016/S0039-9140(99)00129-0.

    Article  CAS  PubMed  Google Scholar 

  48. Celia C, Locatelli M, Cilurzo F, Cosco D, Gentile E, Scalise D, et al. Long term stability evaluation of prostacyclin released from biomedical device through Turbiscan lab expert. Med Chem. 2015;11(4):391–9. https://doi.org/10.2174/1573406410666141110153502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vilches AP, Jimenez-Kairuz A, Alovero F, Olivera ME, Allemandi DA, Manzo RH. Release kinetics and up-take studies of model fluoroquinolones from carbomer hydrogels. Int J Pharm. 2002;246(1-2):17–24. https://doi.org/10.1016/S0378-5173(02)00333-2.

    Article  CAS  PubMed  Google Scholar 

  50. Yue PF, Li Y, Wan J, Yang M, Zhu WF. Wang, CH. Study on formability of solid nanosuspensions during nanodispersion and solidification: I. Novel role of stabilizer/drug property. Int J Pharm. 2013;454(1):269–77. https://doi.org/10.1016/j.ijpharm.2013.06.050.

    Article  CAS  PubMed  Google Scholar 

  51. Al-Khattawi A, Bayly A, Phillips A, et al. The design and scale-up of spray dried particle delivery systems. Expert Opin Drug Deliv. 2018;15(1):47–63. https://doi.org/10.1080/17425247.2017.1321634.

    Article  CAS  PubMed  Google Scholar 

  52. Arpagaus C, Schwartzbach H. Scale-up from bench-top research to labotory production. Büchi Mini Spray Dyer B-290. Information Bulletin N° 52/2008.

  53. Ceschan NE, Bucalá V, Ramírez-Rigo MV. New alginic acid–atenolol microparticles for inhalatory drug targeting. Mater Sci Eng C Mater. 2014;41:255–66. https://doi.org/10.1016/j.msec.2014.04.040.

    Article  CAS  Google Scholar 

  54. Seremeta KP, Tur MIR, Pérez SM, Höcht C, Taira C, Hernández ODL, et al. Spray-dried didanosine-loaded polymeric particles for enhanced oral bioavailability. Colloid Surf B Biointerfaces. 2014;123:515–23. https://doi.org/10.1016/j.colsurfb.2014.09.055.

    Article  CAS  PubMed  Google Scholar 

  55. Rowe RC, Sheskey PJ, Owen SC, editors. Handbook of pharmaceutical excipients. 5th ed. Pharmaceutical Press: London; 2006. p. 430–3.

    Google Scholar 

  56. Ribeiro de Souza AL, Andreani T, Nunes FM, Cassimiro DL, de Almeida AE, Ribeiro CA, et al. Loading of praziquantel in the crystal lattice of solid lipid nanoparticles: studies by DSC and SAXS. J Therm Anal Calorim. 2011;108(1):353–60. https://doi.org/10.1007/s10973-011-1871-4.

    Article  CAS  Google Scholar 

  57. Turner DT, Schwartz A. The glass transition temperature of poly(N-vinyl pyrrolidone) by differential scanning calorimetry. Polymer. 1985;26:757–62. https://doi.org/10.1016/0032-3861(85)90114-4.

    Article  CAS  Google Scholar 

  58. Bühler V. Polyvinylpyrrolidone – excipients for pharmaceuticals. Germany: Springer; 2005. p. 87. https://doi.org/10.1007/b138598.

    Book  Google Scholar 

  59. Yoshioka M, Hancock B, Zografi G. Inhibition of indomethacin crystallization in poly(vinylpyrro1idone) coprecipitates. J Pharm Sci. 1995;84(8):983–6. https://doi.org/10.1002/jps.2600840814.

    Article  CAS  PubMed  Google Scholar 

  60. Perissutti B, Passerini N, Trastullo R, Keiser J, Zanolla D, Zingone G, et al. An explorative analysis of process and formulation variables affecting comilling in a vibrational mill: the case of praziquantel. Int J Pharm. 2017;533(2):402–12. https://doi.org/10.1016/j.ijpharm.2017.05.053.

    Article  CAS  Google Scholar 

  61. Tantishaiyakul V, Kaewnopparat N, Ingkatawornwong S. Properties of solid dispersions of piroxicam in polyvinylpyrrolidone K-30. Int J Pharm. 1996;143(1):59–66. https://doi.org/10.1016/S0378-5173(96)04687-X.

    Article  CAS  Google Scholar 

  62. Mura P, Faucci MT, Manderioli A, Bramanti G, Ceccarelli L. Compatibility study between ibuproxam and pharmaceutical excipients using differential scanning calorimetry, hot-stage microscopy and scanning electron microscopy. J Pharm Biomed Anal. 1998;18(1-2):151–63. https://doi.org/10.1016/S0731-7085(98)00171-X.

    Article  CAS  PubMed  Google Scholar 

  63. Tita B, Fulias A, Bandur G, Marian E, Tita D. Compatibility study between ketoprofen and pharmaceutical excipients used in solid dosage forms. J Pharm Biomed Anal. 2011;56(2):221–7. https://doi.org/10.1016/j.jpba.2011.05.017.

    Article  CAS  PubMed  Google Scholar 

  64. Jackson CL, McKenna GB. The melting behavior of organic materials confined in porous solids. J Chem Phys. 1998;93(12):9002–11. https://doi.org/10.1063/1.459240.

    Article  Google Scholar 

  65. Kuehl C, El-Gendy N, Berkland C. Nanoclusters surface area allows nanoparticle dissolution with microparticle properties. J Pharm Sci. 2014;103(6):1787–98. https://doi.org/10.1002/jps.23980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Costa ED, Priotti J, Orlandi S, Leonardi D, Lamas MC, Nunes TG, et al. Unexpected solvent impact in the crystallinity of praziquantel/poly (vinylpyrrolidone) formulations. A solubility, DSC and solid-state NMR study. Int J Pharm. 2016;511(2):983–93. https://doi.org/10.1016/j.ijpharm.2016.08.009.

    Article  CAS  PubMed  Google Scholar 

  67. Corrigan OI. Thermal analysis of spray dried products. Thermochim Acta. 1995;248:245–58. https://doi.org/10.1016/0040-6031(94)01891-J.

    Article  CAS  Google Scholar 

  68. Cugovčan M, Jablan J, Lovrić J, Cinčić D, Galić N, Jug M. Biopharmaceutical characterization of praziquantel cocrystals and cyclodextrin complexes prepared by grinding. J Pharm Biomed Anal. 2017;137:42–53. https://doi.org/10.1016/j.jpba.2017.01.025.

    Article  CAS  PubMed  Google Scholar 

  69. Sinswat P, Gao X, Yacaman MJ, Williams RO III, Johnston KP. Stabilizer choice for rapid dissolving high potency itraconazole particles formed by evaporative precipitation into aqueous solution. Int J Pharm. 2005;302(1-2):113–24. https://doi.org/10.1016/j.ijpharm.2005.06.027.

    Article  CAS  PubMed  Google Scholar 

  70. Wong SM, Kellaway IW, Murdan S. Enhancement of the dissolution rate and oral absorption of a poorly water soluble drug by formation of surfactant-containing microparticles. Int J Pharm. 2006;317(1):61–8. https://doi.org/10.1016/j.ijpharm.2006.03.001.

    Article  CAS  PubMed  Google Scholar 

  71. El-Subbagh HI, Al-Badr AA. Praziquantel. In: Florey, editor. Analytical profiles of drug substances and excipients, vol. 24: Academic Press Inc; 1998. p. 463–500.

  72. Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res. 2008;10(5):845–62. https://doi.org/10.1007/s11051-008-9357-4.

    Article  CAS  Google Scholar 

  73. Paredes AJ, Sanchez Bruni S, Allemandi D, Lanusse C, Palma SD. Albendazole nanocrystals with improved pharmacokinetic performance in mice. Ther Deliv. 2018;9(2):89–97. https://doi.org/10.4155/tde-2017-0090.

    Article  CAS  PubMed  Google Scholar 

  74. Lippold BC, Ohm A. Correlation between wettability and dissolution rate of pharmaceutical powders. Int J Pharm. 1986;28(1):67–74. https://doi.org/10.1016/0378-5173(86)90148-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors kindly thank the Universidad Nacional del Sur (PGI 24/ZB70, PGI 24/B252), Agencia Nacional de Promoción Científica y Tecnológica (PICT-2016-0976), and CONICET (PIP 11220150100704CO) for the financial support; Lic. F. Cabrera, Tec. T. Odoux (PLAPIQUI, Argentina), Dr. F. Prado (IFISUR, Argentina), C. Briones Nieva, and Dr. J.M. Bermudez (INIQUI Argentina) for their technical assistance; and Dr. A. Ayala (Universidade Federal do Ceará, Brazil) for the assistance in PXRD data analysis. M. A. Gonzalez is grateful to CONICET (Argentina) for the PhD fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Gonzalez Vidal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, M.A., Ramírez Rigo, M.V. & Gonzalez Vidal, N.L. Orphan Formulations in Pediatric Schistosomiasis Treatment: Development and Characterization of Praziquantel Nanoparticle—Loaded Powders for Reconstitution. AAPS PharmSciTech 20, 318 (2019). https://doi.org/10.1208/s12249-019-1548-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1548-z

KEY WORDS

Navigation