Skip to main content

Advertisement

Log in

Controlled Release of Lidocaine–Diclofenac Ionic Liquid Drug from Freeze-Thawed Gelatin/Poly(Vinyl Alcohol) Transdermal Patches

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objectives of this work were to prepare a 5 wt% lidocaine–diclofenac ionic liquid drug–loaded gelatin/poly(vinyl alcohol) transdermal patch using a freeze/thaw method and to evaluate its physicochemical properties, in vitro release of lidocaine and diclofenac, and stability test. The lidocaine–diclofenac ionic liquid drug was produced by the ion pair reaction between the hydrochloride salts of lidocaine and the sodium salts of diclofenac. The thermal properties of the final drug product were significantly changed from the primary drugs. The ionic liquid drug could be dissolved in water and mixed in a polymer solution. The resulting transdermal patch was then exposed to 10 cycles of freezing and thawing preparation at − 20°C for 8 h and at 25°C for 4 h, respectively. As a result, it was found that the lidocaine–diclofenac ionic liquid drug–loaded transdermal patch showed good physicochemical properties and could feasibly be used in pharmaceutical applications. The lidocaine–diclofenac ionic liquid drug was not affected by the properties of the transdermal patch due to the lack of chemical interaction between polymer base and drug. The high drug release values of both lidocaine and diclofenac were controlled by the gelatin/poly(vinyl alcohol) transdermal patch. The patch showed good stability over the study period of 3 months when kept at 4°C or under ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moniruzzaman M, Kamiya N, Goto M. Ionic liquid based microemulsion with pharmaceutically accepted components: formulation and potential applications. J Colloid Interface Sci. 2010;352(1):136–42. https://doi.org/10.1016/j.jcis.2010.08.035.

    Article  CAS  PubMed  Google Scholar 

  2. Brennecke JF, Maginn EJ. Ionic liquids: innovative fluids for chemical processing. AICHE J. 2001;47(11):2384–9. https://doi.org/10.1002/aic.690471102.

    Article  CAS  Google Scholar 

  3. Mizuuchi H, Jaitely V, Murdan S, Florence AT. Room temperature ionic liquids and their mixtures: potential pharmaceutical solvents. Eur J Pharm Sci. 2008;33(4):326–31. https://doi.org/10.1016/j.ejps.2008.01.002.

    Article  CAS  PubMed  Google Scholar 

  4. Tomasz S, Michal Piotr M, Anna P. Ionic liquids: a new strategy in pharmaceutical synthesis. Mini-Rev Org Chem. 2012;9(2):203–8. https://doi.org/10.2174/157019312800604698.

    Article  Google Scholar 

  5. Wilkes JS. A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem. 2002;4(2):73–80. https://doi.org/10.1039/B110838G.

    Article  CAS  Google Scholar 

  6. Shamshina JL, Berton P, Wang H, Zhou X, Gurau G, Rogers RD. Ionic liquids in pharmaceutical industry. Green techniques for organic synthesis and medicinal chemistry. 2018. pp. 539–77. https://doi.org/10.1002/9781119288152.ch20.

    Chapter  Google Scholar 

  7. Marrucho IM, Branco LC, Rebelo LPN. Ionic liquids in pharmaceutical applications. Annu Rev Chem Biomol Eng. 2014;5(1):527–46. https://doi.org/10.1146/annurev-chembioeng-060713-040024.

    Article  CAS  PubMed  Google Scholar 

  8. Dobler D, Schmidts T, Klingenhöfer I, Runkel F. Ionic liquids as ingredients in topical drug delivery systems. Int J Pharm. 2013;441(1):620–7. https://doi.org/10.1016/j.ijpharm.2012.10.035.

    Article  CAS  PubMed  Google Scholar 

  9. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001;3(4):156–64. https://doi.org/10.1039/B103275P.

    Article  CAS  Google Scholar 

  10. Moniruzzaman M, Goto M. Ionic liquids: future solvents and reagents for pharmaceuticals. J Chem Eng Jpn. 2011;44(6):370–81. https://doi.org/10.1252/jcej.11we015.

    Article  CAS  Google Scholar 

  11. Pernak J, Sobaszkiewicz K, Mirska I. Anti-microbial activities of ionic liquids. Green Chem. 2003;5(1):52–6. https://doi.org/10.1039/B207543C.

    Article  CAS  Google Scholar 

  12. Moniruzzaman M, Tahara Y, Tamura M, Kamiya N, Goto M. Ionic liquid-assisted transdermal delivery of sparingly soluble drugs. Chem Commun. 2010;46(9):1452–4. https://doi.org/10.1039/B907462G.

    Article  CAS  Google Scholar 

  13. Goindi S, Arora P, Kumar N, Puri A. Development of novel ionic liquid-based microemulsion formulation for dermal delivery of 5-fluorouracil. AAPS PharmSciTech. 2014;15(4):810–21. https://doi.org/10.1208/s12249-014-0103-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moniruzzaman M, Tamura M, Tahara Y, Kamiya N, Goto M. Ionic liquid-in-oil microemulsion as a potential carrier of sparingly soluble drug: characterization and cytotoxicity evaluation. Int J Pharm. 2010;400(1):243–50. https://doi.org/10.1016/j.ijpharm.2010.08.034.

    Article  CAS  PubMed  Google Scholar 

  15. Zakrewsky M, Lovejoy KS, Kern TL, Miller TE, Le V, Nagy A, et al. Ionic liquids as a class of materials for transdermal delivery and pathogen neutralization. Proc Natl Acad Sci. 2014;111(37):13313–8. https://doi.org/10.1073/pnas.1403995111.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang D, Wang H-J, Cui X-M, Wang C-X. Evaluations of imidazolium ionic liquids as novel skin permeation enhancers for drug transdermal delivery. Pharm Dev Technol. 2017;22(4):511–20. https://doi.org/10.3109/10837450.2015.1131718.

    Article  CAS  PubMed  Google Scholar 

  17. Jaitely V, Karatas A, Florence AT. Water-immiscible room temperature ionic liquids (RTILs) as drug reservoirs for controlled release. Int J Pharm. 2008;354(1):168–73. https://doi.org/10.1016/j.ijpharm.2008.01.034.

    Article  CAS  PubMed  Google Scholar 

  18. Bica K, Rijksen C, Nieuwenhuyzen M, Rogers RD. In search of pure liquid salt forms of aspirin: ionic liquid approaches with acetylsalicylic acid and salicylic acid. Phys Chem Chem Phys. 2010;12(8):2011–7. https://doi.org/10.1039/B923855G.

    Article  CAS  PubMed  Google Scholar 

  19. Miwa Y, Hamamoto H, Ishida T. Lidocaine self-sacrificially improves the skin permeation of the acidic and poorly water-soluble drug etodolac via its transformation into an ionic liquid. Eur J Pharm Biopharm. 2016;102:92–100. https://doi.org/10.1016/j.ejpb.2016.03.003.

    Article  CAS  PubMed  Google Scholar 

  20. Berton P, Di Bona KR, Yancey D, Rizvi SAA, Gray M, Gurau G, et al. Transdermal bioavailability in rats of lidocaine in the forms of ionic liquids, salts, and deep eutectic. ACS Med Chem Lett. 2017;8(5):498–503. https://doi.org/10.1021/acsmedchemlett.6b00504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park HJ, Prausnitz MR. Lidocaine-ibuprofen ionic liquid for dermal anesthesia. AICHE J. 2015;61(9):2732–8. https://doi.org/10.1002/aic.14941.

    Article  CAS  Google Scholar 

  22. Hough WL, Smiglak M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, et al. The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem. 2007;31(8):1429–36. https://doi.org/10.1039/B706677P.

    Article  CAS  Google Scholar 

  23. Maneewattanapinyo P, Suksaeree J. Development and validation of HPLC method for characterization of the acidic and basic drugs prepared into ionic liquid. Lat Am J Pharm. 2019;38(5):961–7.

    Google Scholar 

  24. Roy SD, Gutierrez M, Flynn GL, Cleary GW. Controlled transdermal delivery of fentanyl: characterizations of pressure-sensitive adhesives for matrix patch design. J Pharm Sci. 1996;85(5):491–5. https://doi.org/10.1021/js950415w.

    Article  CAS  PubMed  Google Scholar 

  25. Heuschkel S, Goebel A, Neubert RHH. Microemulsions — modern colloidal carrier for dermal and transdermal drug delivery. J Pharm Sci. 2008;97(2):603–31. https://doi.org/10.1002/jps.20995.

    Article  CAS  PubMed  Google Scholar 

  26. Goebel ASB, Knie U, Abels C, Wohlrab J, Neubert RHH. Dermal targeting using colloidal carrier systems with linoleic acid. Eur J Pharm Biopharm. 2010;75(2):162–72. https://doi.org/10.1016/j.ejpb.2010.02.001.

    Article  CAS  PubMed  Google Scholar 

  27. Alkilani AZ, McCrudden MTC, Donnelly RF. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 2015;7(4):438–70. https://doi.org/10.3390/pharmaceutics7040438.

    Article  CAS  PubMed  Google Scholar 

  28. Hassan CM, Peppas NA. Structure and applications of Poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. In: Chang JY, Godovsky DY, Han MJ, Hassan CM, Kim J, Lee B, et al., editors. Biopolymers PVA hydrogels, anionic polymerisation nanocomposites. Berlin Heidelberg: Springer; 2000. p. 37–65.

    Chapter  Google Scholar 

  29. Hassan CM, Peppas NA. Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules. 2000;33(7):2472–9. https://doi.org/10.1021/ma9907587.

    Article  CAS  Google Scholar 

  30. Martínez YN, Cavello I, Hours R, Cavalitto S, Castro GR. Immobilized keratinase and enrofloxacin loaded on pectin PVA cryogel patches for antimicrobial treatment. Bioresour Technol. 2013;145:280–4. https://doi.org/10.1016/j.biortech.2013.02.063.

    Article  CAS  PubMed  Google Scholar 

  31. Gonzalez JS, Martínez YN, Castro GR, Alvarez VA. Preparation and characterization of polyvinyl alcohol–pectin cryogels containing enrofloxacin and keratinase as potential transdermal delivery device. Adv Mater Lett. 2016;7(8):640–5.

    Article  CAS  Google Scholar 

  32. Ah Y-C, Choi J-K, Choi Y-K, Ki H-M, Bae J-H. A novel transdermal patch incorporating meloxicam: in vitro and in vivo characterization. Int J Pharm. 2010;385(1-2):12–9. https://doi.org/10.1016/j.ijpharm.2009.10.013.

    Article  CAS  PubMed  Google Scholar 

  33. Cilurzo F, Minghetti P, Casiraghi A, Tosi L, Pagani S, Montanari L. Polymethacrylates as crystallization inhibitors in monolayer transdermal patches containing ibuprofen. Eur J Pharm Biopharm. 2005;60(1):61–6. https://doi.org/10.1016/j.ejpb.2005.02.001.

    Article  CAS  PubMed  Google Scholar 

  34. Jain P, Banga AK. Inhibition of crystallization in drug-in-adhesive-type transdermal patches. Int J Pharm. 2010;394(1–2):68–74. https://doi.org/10.1016/j.ijpharm.2010.04.042.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jirapornchai Suksaeree.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maneewattanapinyo, P., Yeesamun, A., Watthana, F. et al. Controlled Release of Lidocaine–Diclofenac Ionic Liquid Drug from Freeze-Thawed Gelatin/Poly(Vinyl Alcohol) Transdermal Patches. AAPS PharmSciTech 20, 322 (2019). https://doi.org/10.1208/s12249-019-1545-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1545-2

KEY WORDS

Navigation