Selectivity Enhancement of Paclitaxel Liposome Towards Folate Receptor-Positive Tumor Cells by Ligand Number Optimization Approach

Abstract

The present work aims to develop folate-targeted paclitaxel liposome (F-PTX-LIP), which will selectively target tumor cells overexpressing folate receptor (FR) and leave normal cells. Liposomes were prepared by thin-film hydration method followed by post-insertion of synthesized ligand 1,2-distearoyl-sn-glycero-phosphoethanolamine-polyethyleneglycol 2000-folic acid (DSPE-PEG2000-FA) on the outer surface of the liposome. The synthesized ligand was evaluated for in vivo acute toxicity in Balb/c mice. Developed liposomal formulations were characterized using transmission electron microscopy (TEM) and small-angle neutron scattering (SANS). We have investigated the effect of ligand number on cell uptake and cytotoxicity by confocal laser scanning microscopy (CLSM), competitive inhibition and 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay. Compared to lung adenocarcinoma cells (A549), uptake in human ovarian carcinoma cells (SKOV3) was 2.2- and 1.2-fold higher for liposome with 480 and 240 ligand number respectively. Competitive inhibition experiment shows that prior incubation of SKOV3 cells with free folic acid significantly reduced the cell uptake of F-PTX-LIP with 480 ligand number (480 F-PTX-LIP) by 2.6-fold. 480 F-PTX-LIP displays higher cytotoxicity than free drug and PTX liposome. Moreover, it specifically targets the cells with higher folate receptor expression. Optimized 480 F-PTX-LIP formulation can be potentially useful for the treatment of folate receptor-positive tumors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

FR:

folate receptor

PTX:

paclitaxel

PTX-LIP:

paclitaxel liposome

F-PTX-LIP:

folate-targeted paclitaxel liposome

DSPE-PEG2000:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethyleneglycol 2000

DSPE-PEG 2000-FA:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethyleneglycol 2000-folic acid

PS:

particle size

PDI:

polydispersity index

ZP:

zeta potential

% EE:

percent drug entrapment efficiency

% DL:

percent drug loading

TEM:

transmission electron microscopy

SANS:

small-angle neutron scattering

DSC:

differential scanning calorimetry

CLSM:

confocal laser scanning microscopy

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

F-LIP:

FR-targeted liposomes

NF-LIP:

folate receptor-targeted liposomes with no ligand

b-LIP:

blank liposome

240 F-LIP:

folate receptor-targeted liposomes with 240 ligand per liposome

480 F-LIP:

folate receptor-targeted liposomes with 480 ligand per liposome

240 F-PTX-LIP:

folate receptor-targeted paclitaxel liposomes with 240 ligand per liposome

480 F-PTX-LIP:

folate receptor-targeted paclitaxel liposomes with 480 ligand per liposome

PEG:

polyethylene glycols

SPC:

soya phosphatidylcholine LIPOID S100

DCP:

dihexadecylphosphate

DCC:

dicyclohexylcarbodiimide

NHS:

N-hydroxysuccinimide

TEA:

triethylamine

DLS:

dynamic light scattering

FTIR:

Fourier transform infrared

PSD:

position-sensitive detector

RPMI:

Roswell Park Memorial Institute

1H NMR:

proton nuclear magnetic resonance

MFI:

mean fluorescence intensity

References

  1. 1.

    Singla AK, Garg A, Aggarwal D. Paclitaxel and its formulations. Int J Pharm. 2002;235:179–92.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Zhang Z, Mei L, Feng S-S. Paclitaxel drug delivery systems. Expert Opin Drug Deliv. 2013;10:325–40.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Kampan NC, Madondo MT, McNally OM, Quinn M, Plebanski M. Paclitaxel and its evolving role in the management of ovarian cancer. Biomed Res Int. 2015;2015:1–21.

    Article  Google Scholar 

  4. 4.

    Sgadari C, Toschi E, Palladino C, Barillari G, Carlei D, Cereseto A, et al. Mechanism of paclitaxel activity in Kaposi’s sarcoma. J Immunol. 2000;165:509–17.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Perez EA. Paclitaxel in breast cancer. Women’s Health. 2006;2:11–21.

    Google Scholar 

  6. 6.

    Yoshizawa Y, Kono Y, Ogawara K, Kimura T, Higaki K. PEG liposomalization of paclitaxel improved its in vivo disposition and anti-tumor efficacy. Int J Pharm. 2011;412:132–41.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Yang T, Cui F, Choi M, Cho J. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm. 2007;338:317–26.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Gelderblom H, Verweij J, Nooter K, Sparreboom A, Cremophor EL. The drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37:1590–8.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Szebeni J, Muggia FM, Alving CR. Complement activation by Cremophor EL as a possible contributor to hypersensitivity to paclitaxel: an in vitro study. J Natl Cancer Inst. 1998;90:300–6.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Gogaté US, Schwartz PA, Agharkar SN. Effect of unpurified Cremophor EL on the solution stability of paclitaxel. Pharm Dev Technol. 2009;14:1–8.

    PubMed  Article  Google Scholar 

  11. 11.

    Maas B, Huber C, Krgmer I. Plasticizer extraction of Taxol®—infusion solution from various infusion devices. Pharm World Sci. 1996;18:78–82.

    CAS  Article  Google Scholar 

  12. 12.

    Turánek J. Liposomal paclitaxel formulations. J Control Release. 2012;163:322–34.

    PubMed  Article  Google Scholar 

  13. 13.

    Perche F, Torchilin VP. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv. 2013;2013:1–32.

    Article  Google Scholar 

  14. 14.

    Henderson IC, Bhatia V. Nab-paclitaxel for breast cancer: a new formulation with an improved safety profile and greater efficacy. Expert Rev Anticancer Ther. 2007;7:919–43.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Green MR, Manikhas GM, Orlov S, Afanasyev B, Makhson AM, Bhar P, et al. Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol. 2006;17:1263–8.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Ma P, Mumper RJ. Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotecghnol. 2013;4:1–35.

    Google Scholar 

  17. 17.

    Zhang JA, Anyarambhatla G, Ma L, Ugwu S, Xuan T, Sardone T, et al. Development and characterization of a novel Cremophor EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur J Pharm Biopharm. 2005;59:177–87.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Maurer N, Fenske DB, Cullis PR. Developments in liposomal drug delivery systems. Expert Opin Biol Ther. 2001;1:923–48.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1:297–315.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science (80-). 2012;338:903–10.

    CAS  Article  Google Scholar 

  21. 21.

    Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Perspectives (Montclair). 2016;1:1–12.

    Google Scholar 

  22. 22.

    Li J, Wang F, Sun D, Wang R. A review of the ligands and related targeting strategies for active targeting of paclitaxel to tumours. J Drug Target. 2016;24:590–602.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Pattni BS, Torchilin VP. Targeted drug delivery: concepts and design. Target Drug Deliv Concepts Des. 2015.

  24. 24.

    Fernández M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci. 2018;9:790–810.

    PubMed  Article  Google Scholar 

  25. 25.

    Saul JM, Annapragada AV, Bellamkonda RV. A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J Control Release. 2006;114:277–87.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Bandyopadhyay A, Fine RL, Demento S, Bockenstedt LK, Fahmy TM. The impact of nanoparticle ligand density on dendritic-cell targeted vaccines. Biomaterials. 2011;32:3094–105.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Alkilany AM, Zhu L, Weller H, Mews A, Parak W, Barz M, et al. Ligand density on nanoparticles: a parameter with critical impact on nanomedicine. Adv Drug Deliv Rev. 2019.

  28. 28.

    Liu H, Doane TL, Cheng Y, Lu F, Srinivasan S, Zhu J-J, et al. Control of surface ligand density on PEGylated gold nanoparticles for optimized cancer cell uptake. Part Part Syst Charact. 2015;32:197–204.

    CAS  Article  Google Scholar 

  29. 29.

    Elias DR, Poloukhtine A, Popik V, Tsourkas A. Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomed Nanotechnol Biol Med. 2013;9:194–201.

    CAS  Article  Google Scholar 

  30. 30.

    Cho HY, Lee CK, Lee YB. Preparation and evaluation of PEGylated and folate-PEGylated liposomes containing paclitaxel for lymphatic delivery. J Nanomater. 2015:1–10.

    CAS  Google Scholar 

  31. 31.

    Committee for Medicinal Products for Human Use (CHMP)—guideline on the evaluation of anticancer medicinal products in man. Eur Med Agency. 2017;44:1–43.

  32. 32.

    Berlot G. Monitoring of hemostasis. Hemocoagulative Probl Crit Ill Patient. 2011;1–238.

  33. 33.

    Fromell K, Andersson M, Elihn K, Caldwell KD. Nanoparticle decorated surfaces with potential use in glycosylation analysis. Colloids Surf B Biointerfaces. 2005;46:84–91.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Montanari JAM, Bucci PL, Alonso SV, De Biomembranas L, De Quilmes UN, Peña RS, et al. A model based in the radius of vesicles to predict the number of unilamellar liposomes. Int J Res Pharm Chem. 2014;4:484–9.

    Google Scholar 

  35. 35.

    Nilsson T, Lundin CR, Nordlund G, Ädelroth P, Von Ballmoos C, Brzezinski P. Lipid-mediated protein-protein interactions modulate respiration-driven ATP synthesis. Sci Rep Nature Publishing Group. 2016;6:1–11.

    Article  Google Scholar 

  36. 36.

    Wu J, Liu Q, Lee RJ. A folate receptor-targeted liposomal formulation for paclitaxel. Int J Pharm. 2006;316:148–53.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Xiang G, Wu J, Lu Y, Liu Z, Lee RJ. Synthesis and evaluation of a novel ligand for folate-mediated targeting liposomes. Int J Pharm. 2008;356:29–36.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Yang X, Li Y, Li M, Zhang L, Feng L, Zhang N. Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett. 2013;334:338–45.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Aswal VK, Goyal PS. Small-angle neutron scattering diffractometer at Dhruva reactor. Curr Sci. 2000;79:947–53.

    Google Scholar 

  40. 40.

    Jan BY, Pedersen S. Resolution function and flux at the sample for small-angle X-ray scattering calculated in position-angle-wavelength space. J Appl Crystallogr. 1991;24:893–909.

    Article  Google Scholar 

  41. 41.

    Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett. 2018;13.

Download references

Acknowledgments

The authors would like to acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi, and Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Mumbai, for providing fellowship. They are also thankful to AICTE-NAFETIC for providing research facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pradeep R. Vavia.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 767 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prajapati, M.K., Bishnu, A., Ray, P. et al. Selectivity Enhancement of Paclitaxel Liposome Towards Folate Receptor-Positive Tumor Cells by Ligand Number Optimization Approach. AAPS PharmSciTech 20, 317 (2019). https://doi.org/10.1208/s12249-019-1531-8

Download citation

KEY WORDS

  • nanotechnology
  • liposome
  • paclitaxel
  • DSPE-PEG2000-Folate
  • ligand number
  • folate receptor targeting