Skip to main content

Development and Investigation of Vitamin C-Enriched Adapalene-Loaded Transfersome Gel: a Collegial Approach for the Treatment of Acne Vulgaris

Abstract

Adapalene-loaded transfersome gel containing vitamin C as a combination therapy for the management of acne vulgaris was developed in the present study. The transfersome was prepared by reverse-phase evaporation, and the effect of various process parameters were investigated by the Design of Experiment (DOE) approach and optimized based on the particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE). The selected tranfersomes were further evaluated for their thermal behavior and morphology by transmission electron microscopy and turbidity measurements and incorporated into a gel with/without vitamin C. The gel was evaluated and compared with the marketed product (Adiff gel) for various physicochemical parameters, and in vivo studies in testosterone-induced rat models of acne. The prepared transfersomes had PS in the range of 280 to 400 nm, PDI values of 0.416 to 0.8, ZP of − 38 to − 20 mV, and % EE of 32 to 70%. DSC studies confirmed a positive interaction of the components in the transfersome. Surface morphology confirmed that the vesicles were spherical, unilamellar, and discrete. A relative deformability study showed higher elasticity of the transfersomes compared with Adiff aqs gel. Ascorbyl-6-palmitate in adapalene-loaded transfersome gel containing vitamin C (ADVTG) was found to have a good antioxidant free radical–scavenging activity. An in vitro drug release study showed that the sustained release of the transfersomal formulations was attributed to the flexibility of the vesicles by which penetration was increased. ADVTG was found to be promising in treating acne compared with the marketed product.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Gupta M, Agrawal U, Vyas SP. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin Drug Deliv. 2012;9:783–804. https://doi.org/10.1517/17425247.2012.686490.

    CAS  Article  PubMed  Google Scholar 

  2. Brown MB, Martin GP, Jones SA, Akomeah FK. Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv. 2006;13:175–87. https://doi.org/10.1080/10717540500455975.

    CAS  Article  PubMed  Google Scholar 

  3. Ruela ALM, Perissinato AG, de Lino ME S, Mudrik PS, Pereira GR. Evaluation of skin absorption of drugs from topical and transdermal formulations. Brazilian J Pharm Sci. 2016;52:527–44. https://doi.org/10.1590/s1984-82502016000300018.

    CAS  Article  Google Scholar 

  4. Alexander A, Dwivedi S, Ajazuddin, Giri TK, Saraf S, Saraf S, et al. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release. 2012;164:26–40. https://doi.org/10.1016/j.jconrel.2012.09.017.

    CAS  Article  Google Scholar 

  5. Shahiwala A, Misra A. Studies in topical application of niosomally entrapped Nimesulide. J Pharm Pharm Sci. 2002;5:220–5.

    CAS  PubMed  Google Scholar 

  6. Abd-Elsalam WH, El-Zahaby SA, Al-Mahallawi AM. Formulation and in vivo assessment of terconazole-loaded polymeric mixed micelles enriched with Cremophor EL as dual functioning mediator for augmenting physical stability and skin delivery. Drug Deliv. 2018;25:484–92. https://doi.org/10.1080/10717544.2018.1436098.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL. Challenges and opportunities in dermal/transdermal delivery. Ther Deliv. 2010;1:109–31.

    CAS  Article  Google Scholar 

  8. Patel V, Sharma OP, Mehta T. Nanocrystal: a novel approach to overcome skin barriers for improved topical drug delivery. Expert Opin Drug Deliv. 2018;15:351–68. https://doi.org/10.1080/17425247.2018.1444025.

    CAS  Article  PubMed  Google Scholar 

  9. Kim H, Kim JT, Barua S, Yoo SY, Hong SC, Lee KB, et al. Seeking better topical delivery technologies of moisturizing agents for enhanced skin moisturization. Expert Opin Drug Deliv. 2018;15:17–31. https://doi.org/10.1080/17425247.2017.1306054.

    CAS  Article  PubMed  Google Scholar 

  10. Akhtar N. Vesicles: a recently developed novel carrier for enhanced topical drug delivery. Curr Drug Deliv. 2014;11:87–97. https://doi.org/10.2174/15672018113106660064.

    CAS  Article  PubMed  Google Scholar 

  11. Hua S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol. 2015;6:219. https://doi.org/10.3389/fphar.2015.00219.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Abdelkader H, Alani AWG, Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv. 2014;21:87–100. https://doi.org/10.3109/10717544.2013.838077.

    CAS  Article  PubMed  Google Scholar 

  13. Anderson CW. Field measurements. In: National Field Manual for the Collection of Water-Quality Data (TWRI Book 9). Virginia: U.S. Geological Survey; 2005. (Chapter 6.7, Turbidity, Version 2.1, 9/2005).

  14. Rai S, Pandey V, Rai G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: the state of the art. Nano Rev Exp. 2017;8:1325708. https://doi.org/10.1080/20022727.2017.1325708.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Dragicevic N, Maibach HI. Percutaneous penetration enhancers chemical methods in penetration enhancement. Nanocarriers. 2016. https://doi.org/10.1007/978-3-662-47862-2.

  16. Zhang Z, Wang X, Chen X, Wo Y, Zhang Y, Biskup E. 5-fluorouracil-loaded transfersome as theranostics in dermal tumor of hypertrophic scar tissue. J Nanomater. 2015;253712:1–9. https://doi.org/10.1155/2015/253712.

    CAS  Article  Google Scholar 

  17. Bragagni M, Mennini N, Maestrelli F, Cirri M, Mura P. Comparative study of liposomes, transfersomes and ethosomes as carriers for improving topical delivery of celecoxib. Drug Deliv. 2012;19:354–61. https://doi.org/10.3109/10717544.2012.724472.

    CAS  Article  PubMed  Google Scholar 

  18. Cevc G, Gebauer D, Stieber J, Schätzlein A, Blume G. Ultraflexible vesicles, transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim Biophys Acta Biomembr. 1998;1368:201–15. https://doi.org/10.1016/S0005-2736(97)00177-6.

    CAS  Article  Google Scholar 

  19. Rattanapak T, Young K, Rades T, Hook S. Comparative study of liposomes, transfersomes, ethosomes and cubosomes for transcutaneous immunisation: characterisation and in vitro skin penetration. J Pharm Pharmacol. 2012;64:1560–9. https://doi.org/10.1111/j.2042-7158.2012.01535.x.

    CAS  Article  PubMed  Google Scholar 

  20. Ascenso A, Raposo S, Batista C, Cardoso P, Mendes T, Praça FG, et al. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes. Int J Nanomedicine. 2015;10:5837–51. https://doi.org/10.2147/IJN.S86186.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Gupta PN, Mishra V, Rawat A, Dubey P, Mahor S, Jain S, et al. Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study. Int J Pharm. 2005;293:73–82. https://doi.org/10.1016/j.ijpharm.2004.12.022.

    CAS  Article  PubMed  Google Scholar 

  22. Dawson AL. Acne vulgaris. Bmj. 2013;346:f2634. https://doi.org/10.1136/bmj.f2634.

    Article  PubMed  Google Scholar 

  23. White GM. Recent findings in the epidemiologic evidence, classification, and subtypes of acne vulgaris. J Am Acad Dermatol. 1998;39:S34–7. https://doi.org/10.1016/S0190-9622(98)70442-6.

    CAS  Article  PubMed  Google Scholar 

  24. Thiboutot D, Gollnick H, Bettoli V, Dréno B, Kang S, Leyden JJ, et al. New insights into the management of acne: an update from the Global Alliance to Improve Outcomes in Acne Group. J Am Acad Dermatol. 2009;60:S1–50. https://doi.org/10.1016/j.jaad.2009.01.019.

    Article  Google Scholar 

  25. Jeremy AHT, Holland DB, Roberts SG, Thomson KF, Cunliffe WJ. Inflammatory events are involved in acne lesion initiation. J Invest Dermatol. 2003;121:20–7. https://doi.org/10.1046/j.1523-1747.2003.12321.x.

    CAS  Article  PubMed  Google Scholar 

  26. Keri J, Shiman M. An update on the management of acne vulgaris. Clin Cosmet Investig Dermatol. 2009;2:105–10. https://doi.org/10.1016/j.jaad.2004.01.023.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Nguyen QH, Kim YA, Schwartz RA. Management of acne vulgaris. Am Fam Physician. 1994;50:89–96. https://doi.org/10.1001/jama.2016.11842.

    CAS  Article  PubMed  Google Scholar 

  28. Wolff K, Johnson RA, Saveedra AP. Fitzpatrick’s color atlas & synopsis of clinical dermatology, 7th ed. J Am Acad Dermatol 2010. doi:https://doi.org/10.1016/j.jaad.2009.06.065

  29. Strauss JS, Krowchuk DP, Leyden JJ, Lucky AW, Shalita AR, Siegfried EC, et al. Guidelines of care for acne vulgaris management. J Am Acad Dermatol. 2007;56:651–63. https://doi.org/10.1016/j.jaad.2006.08.048.

    Article  PubMed  Google Scholar 

  30. Piskin S, Uzunali E. A review of the use of adapalene for the treatment of acne vulgaris. Ther Clin Risk Manag. 2007;3:621–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Oxley KS, Jackson JB. Acne (vulgaris and rosacea). xPharm Compr Pharmacol Ref. 2011. https://doi.org/10.1016/B978-008055232-3.60795-0.

  32. Rolewski SL. Clinical review: topical retinoids. Dermatology Nurs. 2003;15:447–50 459–65.

    Google Scholar 

  33. Thielitz A, Gollnick H. Topical retinoids in acne vulgaris: update on efficacy and safety. Am J Clin Dermatol. 2008;9:369–81. https://doi.org/10.2165/0128071-200809060-00003.

    Article  PubMed  Google Scholar 

  34. Pullar JM, Carr AC, Vissers MCM. The roles of vitamin C in skin health. Nutrients. 2017;9:866. https://doi.org/10.3390/nu9080866.

    CAS  Article  PubMed Central  Google Scholar 

  35. Telang P. Vitamin C in dermatology. Indian Dermatol Online J. 2013;4:143–6. https://doi.org/10.4103/2229-5178.110593.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Al-Niaimi F, Chiang NYZ. Topical Vitamin C and the skin: mechanisms of action and clinical applications. J Clin Aesthet Dermatol. 2017;10:14–7.

    PubMed  PubMed Central  Google Scholar 

  37. Gallarate M, Carlotti ME, Trotta M, Bovo S. On the stability of ascorbic acid in emulsified systems for topical and cosmetic use. Int J Pharm. 1999;188:233–41. https://doi.org/10.1016/S0378-5173(99)00228-8.

    CAS  Article  PubMed  Google Scholar 

  38. Pinnell SR, Yang H, Omar M, Monteiro-Riviere N, DeBuys HV, Walker LC, et al. Topical L-ascorbic acid: percutaneous absorption studies. Dermatol Surg. 2001;27:137–42. https://doi.org/10.1046/j.1524-4725.2001.00264.x.

    CAS  Article  PubMed  Google Scholar 

  39. Špiclin P, Homar M, Zupančič-Valant A, Gašperlin M. Sodium ascorbyl phosphate in topical microemulsions. Int J Pharm. 2003;256:65–73. https://doi.org/10.1016/S0378-5173(03)00063-2.

    CAS  Article  PubMed  Google Scholar 

  40. Elmore AR. Final report of the safety assessment of L-ascorbic acid, calcium ascorbate, magnesium ascorbate, magnesium ascorbyl phosphate, sodium ascorbate, and sodium ascorbyl phosphate as used in Cosmetics1. Int J Toxicol. 2005;24:51–111. https://doi.org/10.1080/10915810590953851.

    CAS  Article  PubMed  Google Scholar 

  41. Zheng Y, Ouyang W-Q, Wei Y-P, Syed S, Hao C-S, Wang B-Z, et al. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study. Int J Nanomedicine. 2016;11:5971–87. https://doi.org/10.2147/IJN.S119286.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Malakar J, Sen SO, Nayak AK, Sen KK. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm J. 2012;20:355–63. https://doi.org/10.1016/j.jsps.2012.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Qushawy M, Nasr A, Abd-Alhaseeb M, Swidan S. Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of candida skin infections. Pharmaceutics. 2018;10:E26. https://doi.org/10.3390/pharmaceutics10010026.

    CAS  Article  PubMed  Google Scholar 

  44. Ghate VM, Lewis SA, Prabhu P, Dubey A, Patel N. Nanostructured lipid carriers for the topical delivery of tretinoin. Eur J Pharm Biopharm. 2016;108:253–61. https://doi.org/10.1016/j.ejpb.2016.07.026.

    CAS  Article  PubMed  Google Scholar 

  45. Ahmed TA. Preparation of transfersomes encapsulating sildenafil aimed for transdermal drug delivery: Plackett-Burman design and characterization. J Liposome Res. 2015;25:1–10. https://doi.org/10.3109/08982104.2014.950276.

    CAS  Article  PubMed  Google Scholar 

  46. El Zaafarany GM, Awad GAS, Holayel SM, Mortada ND. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm. 2010;397:164–72. https://doi.org/10.1016/j.ijpharm.2010.06.034.

    CAS  Article  PubMed  Google Scholar 

  47. Salazar J, Heinzerling O, Müller RH, Möschwitzer JP. Process optimization of a novel production method for nanosuspensions using design of experiments (DoE). Int J Pharm. 2011;420:395–403. https://doi.org/10.1016/j.ijpharm.2011.09.003.

    CAS  Article  PubMed  Google Scholar 

  48. Jain A, Garg NK, Jain A, Kesharwani P, Jain AK, Nirbhavane P, et al. A synergistic approach of adapalene-loaded nanostructured lipid carriers, and vitamin C co-administration for treating acne. Drug Dev Ind Pharm. 2016;42:897–905. https://doi.org/10.3109/03639045.2015.1104343.

    CAS  Article  PubMed  Google Scholar 

  49. Adebiyi OE, Olayemi FO, Ning-Hua T, Guang-Zhi Z. In vitro antioxidant activity, total phenolic and flavonoid contents of ethanol extract of stem and leaf of Grewia carpinifolia. Beni-Suef Univ J Basic Appl Sci. 2017;6:10–4. https://doi.org/10.1016/j.bjbas.2016.12.003.

    Article  Google Scholar 

  50. Olugbami JO, Gbadegesin MA, Odunola OA. In vitro free radical scavenging and antioxidant properties of ethanol extract of Terminalia glaucescens. Pharm Res. 2015;7:49–56. https://doi.org/10.4103/0974-8490.147200.

    Article  Google Scholar 

  51. Ravi GS, Charyulu RN, Dubey A, Prabhu P, Hebbar S, Mathias AC. Nano-lipid complex of Rutin: development, characterisation and in vivo investigation of Hepatoprotective, antioxidant activity and bioavailability study in rats. AAPS PharmSciTech. 2018;19:3631–49. https://doi.org/10.1208/s12249-018-1195-9.

    CAS  Article  PubMed  Google Scholar 

  52. Wester RC, Maibach HI. Animal models for percutaneous absorption. Top. Drug Bioavailability, Bioequivalence, Penetration, Boston, MA: Springer US; 1993, p. 333–49. doi:https://doi.org/10.1007/978-1-4899-1262-6_18.

  53. Brogden RN, Goa KE. Adapalene. A review of its pharmacological properties and clinical potential in the management of mild to moderate acne. Drugs. 1997;53:511–9.

    CAS  Article  Google Scholar 

  54. Caron D, Sorba V, Clucas A, Verschoore M. Skin tolerance of adapalene 0.1% gel in combination with other topical antiacne treatments. J Am Acad Dermatol. 1997;36:S113–5. https://doi.org/10.1016/S0190-9622(97)70053-7.

    CAS  Article  PubMed  Google Scholar 

  55. Verschoore M, Poncet M, Czernielewski J, Sorba V, Clucas A. Adapalene 0.1% gel has low skin-irritation potential. J Am Acad Dermatol. 1997;36:S104–9. https://doi.org/10.1016/S0190-9622(97)70051-3.

    CAS  Article  PubMed  Google Scholar 

  56. Wang J, Li Z, Sun F, Tang S, Zhang S, Lv P, et al. Evaluation of dermal irritation and skin sensitization due to vitacoxib. Toxicol Rep. 2017;4:287–90. https://doi.org/10.1016/j.toxrep.2017.06.003.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Harde H, Agrawal AK, Katariya M, Kale D, Jain S. Development of a topical adapalene-solid lipid nanoparticle loaded gel with enhanced efficacy and improved skin tolerability. RSC Adv. 2015;5:43917–29. https://doi.org/10.1039/c5ra06047h.

    CAS  Article  Google Scholar 

  58. Zheng WS, Fang XQ, Wang LL, Zhang YJ. Preparation and quality assessment of itraconazole transfersomes. Int J Pharm. 2012;436:291–8. https://doi.org/10.1016/j.ijpharm.2012.07.003.

    CAS  Article  PubMed  Google Scholar 

  59. Sharma V, Yusuf M, Pathak K. Nanovesicles for transdermal delivery of felodipine: development, characterization, and pharmacokinetics. Int J Pharm Investig. 2014;4:119–30. https://doi.org/10.4103/2230-973X.138342.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Simões SI, Tapadas JM, Marques CM, Cruz MEM, Martins MBF, Cevc G. Permeabilisation and solubilisation of soybean phosphatidylcholine bilayer vesicles, as membrane models, by polysorbate, Tween 80. Eur J Pharm Sci. 2005;26:307–17. https://doi.org/10.1016/j.ejps.2005.07.002.

    CAS  Article  PubMed  Google Scholar 

  61. Jangdey MS, Gupta A, Saraf S, Saraf S. Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: in vitro evaluation. Artif Cells, Nanomedicine Biotechnol. 2017;45:1452–62. https://doi.org/10.1080/21691401.2016.1247850.

    CAS  Article  Google Scholar 

  62. Jain AK, Jain A, Garg NK, Agarwal A, Jain A, Jain SA, et al. Adapalene loaded solid lipid nanoparticles gel: an effective approach for acne treatment. Colloids Surf B: Biointerfaces. 2014;121:222–9. https://doi.org/10.1016/j.colsurfb.2014.05.041.

    CAS  Article  PubMed  Google Scholar 

  63. Al Shuwaili AH, Rasool BKA, Abdulrasool AA. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur J Pharm Biopharm. 2016;102:101–14. https://doi.org/10.1016/j.ejpb.2016.02.013.

    CAS  Article  PubMed  Google Scholar 

  64. Mills OH, Criscito MC, Schlesinger TE, Verdicchio R, Szoke E. Addressing free radical oxidation in acne vulgaris. J Clin Aesthet Dermatol. 2016;9:25–30.

    PubMed  PubMed Central  Google Scholar 

  65. Pirvu CD, Hlevca C, Ortan A, Prisada R. Elastic vesicles as drugs carriers through the skin. Farmacia. 2010;58:128–35.

    CAS  Google Scholar 

  66. Honeywell-Nguyen PL, Arenja S, Bouwstra JA. Skin penetration and mechanisms of action in the delivery of the D2-agonist rotigotine from surfactant-based elastic vesicle formulations. Pharm Res. 2003;20:1619–25. https://doi.org/10.1023/A:1026191402557.

    CAS  Article  PubMed  Google Scholar 

  67. Bhalekar M, Upadhaya P, Madgulkar A. Formulation and evaluation of Adapalene-loaded nanoparticulates for epidermal localization. Drug Deliv Transl Res. 2015;5:585–95. https://doi.org/10.1007/s13346-015-0261-z.

    CAS  Article  PubMed  Google Scholar 

  68. Makrantonaki E, Ganceviciene R, Zouboulis C. An update on the role of the sebaceous gland in the pathogenesis of acne. Dermatoendocrinol. 2011;3:41–9. https://doi.org/10.4161/derm.3.1.13900.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Farris PK. Topical Vitamin C: A useful agent for treating photoaging and other dermatologic conditions. Dermatologic Surg. 2005;31:814–7. https://doi.org/10.1111/j.1524-4725.2005.31725.

    CAS  Article  Google Scholar 

  70. Sharma SR, Poddar R, Sen P, Andrews JT. Effect of vitamin C on collagen biosynthesis and degree of birefringence in polarization sensitive optical coherence tomography (PS-OCT). Afr J Biotechnol. 2008;7:2049–54.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru, India, for providing necessary facilities and financial support to carry out this project. The authors are also thankful to the Manipal Academy of Higher Education, Manipal, India, for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh Dubey.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Guest Editor: S. Narasimha Murthy

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vasanth, S., Dubey, A., G.S., R. et al. Development and Investigation of Vitamin C-Enriched Adapalene-Loaded Transfersome Gel: a Collegial Approach for the Treatment of Acne Vulgaris. AAPS PharmSciTech 21, 61 (2020). https://doi.org/10.1208/s12249-019-1518-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1518-5

KEY WORDS

  • Transfersomes
  • adapalene
  • vitamin C
  • topical
  • cosmetics