Skip to main content
Log in

Application of a Thermosensitive In Situ Gel of Chitosan-Based Nasal Spray Loaded with Tranexamic Acid for Localised Treatment of Nasal Wounds

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The integrity of the nasal epithelium plays a crucial role in the airway defence mechanism. The nasal epithelium may be injured as a result of a large number of factors leading to nose bleeds, also known as epistaxis. However, local measures commonly used to treat epistaxis and improve wound healing present several side effects and patient discomfort. Hence, this study aims to address some of these drawbacks by developing a new formulation for nasal epithelial wound healing. Chitosan, a biodegradable and biocompatible polymer, was used to develop a thermosensitive nasal formulation for the delivery of tranexamic acid (TXA), one of the most effective pharmacological options to control bleeding with cost and tolerability advantages. The in situ gelation properties of the formulation upon administration in the nasal cavity were investigated in terms of gelation time and temperature. It was found that the developed formulation can undergo rapid liquid-to-gel phase change within approximately 5 min at 32°C, which is well within the human nasal cavity temperature range. The spray pattern, deposition and droplet size generated by the nasal spray was also characterised and were found to be suitable for nasal drug delivery. It was also observed that the in situ gelation of the formulation prevent nasal runoff, while the majority of drug deposited mainly in the anterior part of the nose with no lung deposition. The developed formulation was shown to be safe on human nasal epithelium and demonstrated six times faster wound closure compared to the control TXA solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Obata K, Kurose M, Koizumi J, Fujii N, Takano K, Keira T, et al. Regulation of tight junctions in upper airway epithelium. Biomed Res Int. 2013;2012:1–11.

    Google Scholar 

  2. Kasperek ZA, Pollock GF. Epistaxis: an overview. Emerg Med Clin North Am. 2013;31(2):443–54.

    PubMed  Google Scholar 

  3. Schlosser RJ. Epistaxis. N Engl J Med. 2009;360(8):784–9.

    CAS  PubMed  Google Scholar 

  4. Viehweg TL, Roberson JB, Hudson JW. Epistaxis: diagnosis and treatment. J Oral Maxillofac Surg. 2006;64(3):511–8.

    PubMed  Google Scholar 

  5. Beck R, Sorge M, Schneider A, Dietz A. Current approaches to epistaxis treatment in primary and secondary care. Dtsch Arzteblt Int. 2018;115:12–22.

    Google Scholar 

  6. Morgan DJ, Kellerman R. Epistaxis: evaluation and treatment. Prim Care. 2014;41(1):63–73.

    PubMed  Google Scholar 

  7. Wee JH, Lee CH, Rhee CS, Kim JW. Comparison between Gelfoam packing and no packing after endoscopic sinus surgery in the same patients. Eur Arch Otorhinolaryngology. 2012;269(3):897–903.

    Google Scholar 

  8. Virkkula P, Mäkitie AA, Vento SI. Surgical outcome and complications of nasal septal perforation repair with temporal fascia and periosteal grafts. Clin Med Insights Ear Nose Throat. 2015;8:7–11.

    PubMed  PubMed Central  Google Scholar 

  9. Shoman N, Gheriani H, Flamer DJA. Prospective, double-blind, randomized trial evaluating patient satisfaction, bleeding, and wound healing using biodegradable synthetic polyurethane foam (NasoPore) as a middle meatal spacer in functional endoscopic sinus surgery. J Otolaryngol Head Neck Surg. 2009;38(1):112–8.

    PubMed  Google Scholar 

  10. Wormald PJ, Boustred RN, Le T, Hawke LSR. A prospective single-blind randomized controlled study of use of hyaluronic acid nasal packs in patients after endoscopic sinus surgery. Am J Rhinol. 2006;20(1):7–10.

    PubMed  Google Scholar 

  11. Chandra RK, Kern RC. Advantages and disadvantages of topical packing in endoscopic sinus surgery. Curr Opin Otolaryngol Head Neck Surg. 2004;12(1):21–6.

    PubMed  Google Scholar 

  12. Athanasiadis T, Beule AG, Robinson BH, Robinson SR, Shi Z, Wormald PJ. Effects of a novel chitosan gel on mucosal wound healing following endoscopic sinus surgery in a sheep model of chronic rhinosinusitis. Laryngoscope. 2008;118(6):1088–94.

    CAS  PubMed  Google Scholar 

  13. Valentine R, Athanasiadis T, Moratti S, Hanton L, Robinson S, Wormald PJ. The efficacy of a novel chitosan gel on hemostasis and wound healing after endoscopic sinus surgery. Am J Rhinol Allergy. 2010;24(1):70–5.

    PubMed  Google Scholar 

  14. Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv. 2011;29(3):322–37.

    CAS  PubMed  Google Scholar 

  15. Sandri G, Rossi S, Bonferoni MC, Ferrari F, Mori M, Caramella C. The role of chitosan as a mucoadhesive agent in mucosal drug delivery. J Drug Deliv Sci Technol. 2012;22(4):275–84.

    CAS  Google Scholar 

  16. Van der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci. 2001;14(3):201–7.

    PubMed  Google Scholar 

  17. Zhang H, Megan O, Christine Allen EK. Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules. 2004;5(6):2461–8.

    CAS  PubMed  Google Scholar 

  18. Vllasaliu D, Exposito-Harris R, Heras A, Casettari L, Garnett M, Illum L, et al. Tight junction modulation by chitosan nanoparticles: comparison with chitosan solution. Int J Pharm. 2010;400(1–2):183–93.

    CAS  PubMed  Google Scholar 

  19. Yun H, Juan L, Pei P, Bo J, Guang X. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr Polym. 2015;117:524–36.

    Google Scholar 

  20. Ruel-Gariépy E, Leroux JC. In situ-forming hydrogels - review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58(2):409–26.

    PubMed  Google Scholar 

  21. Gonçalves VSS, Matias AA, Poejo J, Serra AT, Duarte CMM. Application of RPMI 2650 as a cell model to evaluate solid formulations for intranasal delivery of drugs. Int J Pharm. 2016;515(1–2):1–10.

    PubMed  Google Scholar 

  22. Zahir-Jouzdani F, Wolf JD, Atyabi F, Bernkop-Schnürch A. In situ gelling and mucoadhesive polymers: why do they need each other? Expert Opin Drug Deliv. 2018;15(10):1007–19.

    CAS  PubMed  Google Scholar 

  23. Wu J, Wei W, Wang LY, Su ZG, Ma GH. A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials. 2007;28(13):2220–32.

    CAS  PubMed  Google Scholar 

  24. Nazar H, Fatouros DG, Van Der Merwe SM, Bouropoulos N, Avgouropoulos G, Tsibouklis J, et al. Thermosensitive hydrogels for nasal drug delivery: the formulation and characterisation of systems based on N-trimethyl chitosan chloride. Eur J Pharm Biopharm. 2011;77(2):225–32.

    CAS  PubMed  Google Scholar 

  25. Li Y, He J, Lyu X, Yuan Y, Gaizhen Wang BZ. Chitosan-based thermosensitive hydrogel for nasal delivery of exenatide: effect of magnesium chloride. Int J Pharm. 2018;553:375–85.

    CAS  PubMed  Google Scholar 

  26. Dunn CJ, Goa KL. Tranexamic acid a review of its use in surgery and other indications. Drugs. 1999;57(6):1005–32.

    CAS  PubMed  Google Scholar 

  27. Logan JK, Pantle H. Role of topical tranexamic acid in the management of idiopathic anterior epistaxis in adult patients in the emergency department. Am J Health Syst Pharm. 2016;73(21):1755–9.

    CAS  PubMed  Google Scholar 

  28. Joseph J, Martinez-Devesa P, Bellorini J, Burton MJ. Tranexamic acid for patients with nasal haemorrhage (epistaxis). Cochrane Database Syst Rev. 2018;12.

  29. Michael G, Koyfman A, Long B. Tranexamic acid for the treatment of epistaxis. Acad Emerg Med. 2019. https://doi.org/10.1111/acem.13760.

  30. Tibbelin A, Aust R, Bende M, Holgersson M, Petruson B, Rundcrantz H. ÅU. Effect of local tranexamic acid gel in the treatment of epistaxis. ORL J Otorhinolaryngol Relat Spec. 1995;57(4):207–9.

    CAS  PubMed  Google Scholar 

  31. Sarkar DMJ. Use of atomized intranasal tranexamic acid as an adjunctive therapy in difficult-to-treat epistaxis. J Spec Oper Med. 2019;19(2):23–8.

    PubMed  Google Scholar 

  32. Gholizadeh H, Cheng S, Pozzoli M, Messerotti E, Traini D, Young P, et al. Smart thermosensitive chitosan hydrogel for nasal delivery of ibuprofen to treat neurological disorders. Expert Opin Drug Deliv. 2019;16(4):453–66.

    CAS  PubMed  Google Scholar 

  33. Bhise S, Yadav A, Avachat A, Malayandi R. Bioavailability of intranasal drug delivery system. Asian J Pharm. 2009;2(4):201.

    Google Scholar 

  34. Chung YM, Simmons KL, Gutowska AJB. Sol-gel transition temperature of PLGA-g-PEG aqueous solutions. Biomacromolecules. 2002;3(3):511–6.

    CAS  PubMed  Google Scholar 

  35. Tamburic S, Craig DQM. Rheological evaluation of polyacrylic acid hydrogel. Pharm Pharmacol Commun. 1995;1(3):107–9.

    CAS  Google Scholar 

  36. Smyth H, Hickey AJ, Brace G, Barbour T, Gallion J, Grove J. Spray pattern analysis for metered dose inhalers I: orifice size, particle size, and droplet motion correlations. Drug Dev Ind Pharm. 2006;32(9):1033–41.

    CAS  PubMed  Google Scholar 

  37. Kundoor V, Dalby RN. Assessment of nasal spray deposition pattern in a silicone human nose model using a color-based method. Pharm Res. 2010;27(1):30–6.

    CAS  PubMed  Google Scholar 

  38. U.S. Department of Health and Human Services, Food and Drug Administration C for DE and R. Bioavailability and Bioequivalence Studies for Nasal Aerosol and Nasal Sprays for Local Action. 2003;(April).

  39. Huertas-Pérez JF, Heger M, Dekker H, Krabbe H, Lankelma J, Ariese F. Simple, rapid, and sensitive liquid chromatography-fluorescence method for the quantification of tranexamic acid in blood. J Chromatogr A. 2007;1157(1–2):142–50.

    PubMed  Google Scholar 

  40. Wengst A, Reichl S. RPMI 2650 epithelial model and three-dimensional reconstructed human nasal mucosa as in vitro models for nasal permeation studies. Eur J Pharm Biopharm. 2010;74(2):290–7.

    CAS  PubMed  Google Scholar 

  41. Pozzoli M, Ong HX, Morgan L, Sukkar M, Traini D, Young PM, et al. Application of RPMI 2650 nasal cell model to a 3D printed apparatus for the testing of drug deposition and permeation of nasal products. Eur J Pharm Biopharm. 2016;107:223–33.

    CAS  PubMed  Google Scholar 

  42. Jonkman JEN, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, et al. An introduction to the wound healing assay using live-cell microscopy. Cell Adhes Migr. 2014;8(5):440–51.

    Google Scholar 

  43. Haghi M, Van Den Oetelaar W, Moir LM, Zhu B, Phillips G, Crapper J, et al. Inhalable tranexamic acid for haemoptysis treatment. Eur J Pharm Biopharm. 2015;93:311–9.

    CAS  PubMed  Google Scholar 

  44. Khan S, Patil K, Bobade N, Yeole P, Gaikwad R. Formulation of intranasal mucoadhesive temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting efficiency in rats. J Drug Target. 2010;18(3):223–34.

    CAS  PubMed  Google Scholar 

  45. Liu L, Gao Q, Lu X, Zhou H. In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian J Pharm Sci. 2016;11(6):673–83.

    Google Scholar 

  46. Navad P. The European Polysaccharide Network of Excellence (EPNOE). Carbohydr Polym. 2013; 111–118 p.

  47. Naik A, Nair H. Formulation and evaluation of thermosensitive biogels for nose to brain delivery of doxepin. Biomed Res Int. 2014;2014:1–10.

    Google Scholar 

  48. Chenite A, Buschmann M, Wanga D, C. Chaputa NK. Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr Polym. 2001;46(8):39–47.

    CAS  Google Scholar 

  49. Foxman EF, Storer JA, Fitzgerald ME, Wasik BR, Hou L, Zhao H, et al. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proc Natl Acad Sci. 2015;112(3):827–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Guo CDW. The influence of actuation parameters on in vitro testing of nasal spray products. J Pharm Sc. 2006;95(9):2029–40.

    CAS  Google Scholar 

  51. U.S. Department of Health and Human Services Food and Drug C for DE and R. Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products — Chemistry, Manufacturing, and Controls Documentation. 2002;(July).

  52. Kulkarni V, Shaw C. Formulation and characterization of nasal sprays. Inhalation. 2012:10–5.

  53. Dayal P, Shaik MS, Singh M. Evaluation of different parameters that affect droplet-size distribution from nasal sprays using the Malvern Spraytec®. J Pharm Sci. 2004;93(7):1725–42.

    CAS  PubMed  Google Scholar 

  54. Trows S, Wuchner K, Spycher R, Steckel H. Analytical challenges and regulatory requirements for nasal drug products in Europe and the U.S. Pharmaceutics. 2014;6(2):195–219.

    PubMed  PubMed Central  Google Scholar 

  55. Sangolkar S, et al. Particle size determination of nasal drug delivery system: a review. Int J Pharm Sci Rev Res. 2012;17:66–73.

    CAS  Google Scholar 

  56. Watelet J-B, Bachert C, Gevaert P, Van Cauwenberge P. Wound healing of the nasal and paranasal mucosa: a review. Am J Rhinol. 2002;16(2):77–84.

    PubMed  Google Scholar 

  57. Rodriguez LG, Wu X, Guan JL. Wound-healing assay. In Cell Migration Humana Press. 2005:23–9.

  58. Yen J-C, Liu K-T, Cheng Y-H, Tsai C-Y, Woung L-C, Sung Y-J, et al. Thermosensitive chitosan-based hydrogels for sustained release of ferulic acid on corneal wound healing. Carbohydr Polym. 2015;135:308–15.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xin Ong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholizadeh, H., Messerotti, E., Pozzoli, M. et al. Application of a Thermosensitive In Situ Gel of Chitosan-Based Nasal Spray Loaded with Tranexamic Acid for Localised Treatment of Nasal Wounds. AAPS PharmSciTech 20, 299 (2019). https://doi.org/10.1208/s12249-019-1517-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1517-6

KEY WORDS

Navigation