Skip to main content
Log in

Caproyl-Modified G2 PAMAM Dendrimer (G2-AC) Nanocomplexes Increases the Pulmonary Absorption of Insulin

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

We aimed to investigate the absorption-enhancing effect (AEE) of caproyl-modified G2 PAMAM dendrimer (G2-AC) on peptide and protein drugs via the pulmonary route. In this study, G2 PAMAM dendrimer conjugates modified with caproic acid was synthesized, the pulmonary absorption of insulin as models with or without G2-AC were evaluated. The results indicated that G2-AC6 exhibited a greatest AEE for insulin in various caproylation levels of G2-AC. G2-AC6 could significantly enhance the absorption of insulin, and the AEE of G2-AC6 was concentration-dependent. In toxicity tests, G2-AC6 displayed no measurable cytotoxicity to the pulmonary membranes over a concentration range from 0.1% (w/v) to 1.0% (w/v). Measurements of the TEER and permeability showed that G2-AC6 significantly reduced the TEER value of CF and increased its Papp value. The results suggested that G2-AC6 could cross epithelial cells by means of a combination of paracellular and transcellular pathways. These findings suggested G2-AC6 at lower concentrations (below 1.0%, w/v) might be promising absorption enhancers for increasing the pulmonary absorption of peptide and protein drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agu RU, Ugwoke MI, Armand M, Kinget R, Verbeke N. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir Res. 2001;2:198–209.

    Article  CAS  Google Scholar 

  2. Paranjpe M, Müller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci. 2014;15:5852–73.

    Article  CAS  Google Scholar 

  3. Price DF, Luscombe CN, Eddershaw PJ, Edwards CD, Gumbleton M. The differential absorption of a series of P-glycoprotein substrates in isolated perfused lungs from Mdr1a/1b genetic knockout mice can be attributed to distinct physico-chemical properties: an insight into predicting transporter-mediated. Pulmonary Specific Disposition. Pharm Res. 2017;34:2498–516.

    Article  CAS  Google Scholar 

  4. Patel LN, Wang J, Kim KJ, Borok Z, Crandall E, Shen WC. Conjugation with cationic cell-penetrating peptide increases pulmonary absorption of insulin. Mol Pharm. 2009;6:492–503.

    Article  CAS  Google Scholar 

  5. Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv. 2013;4:1443–67.

    Article  CAS  Google Scholar 

  6. Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today. 2001;6:427–36.

    Article  CAS  Google Scholar 

  7. Svenson S, Tomalia DA. Dendrimers in biomedical applications-reflections on the field. Adv Drug Deliv Rev. 2005;57:2106–29.

    Article  CAS  Google Scholar 

  8. Yang H. Targeted nanosystems: advances in targeted dendrimersor cancer therapy. Nanomedicine. 2016;12:309–16.

    Article  CAS  Google Scholar 

  9. Mendes LP, Pan J, Torchilin VP. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules. 2017;22:1401–4.

    Article  Google Scholar 

  10. Bugno J, Hsu HJ, Hong S. Tweaking dendrimers and dendritic nanoparticles for controlled nano-bio interactions: potential nanocarriers for improved cancer targeting. J Drug Target. 2015;23:642–50.

    Article  CAS  Google Scholar 

  11. Serramía MJ, Álvarez S, Fuentes-Paniagua E, Clemente MI, Sánchez-Nieves J, Gómez R, et al. In vivo delivery of siRNA to the brain by carbosilane dendrimer. J Control Release. 2015;200:60–70.

    Article  Google Scholar 

  12. Bai S, Thomas C, Ahsan F. Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin. J Pharm Sci. 2007;96:2090–106.

    Article  CAS  Google Scholar 

  13. Kaminskas LM, McLeod VM, Ascher DB, Ryan GM, Jones S, Chan LJ, et al. Methotrexate-conjugated PEGylated dendrimers show differential patterns of deposition and activity in tumor-burdened lymph nodes after intravenous and subcutaneous administration in rats. Mol Pharm. 2015;12:432–43.

    Article  CAS  Google Scholar 

  14. Hubbard D, Enda M, Bond T, Moghaddam SP, Conarton J, Scaife C, et al. Transepithelial transport of PAMAM dendrimers across isolated human intestinal tissue. Mol Pharm. 2015;12:4099–107.

    Article  CAS  Google Scholar 

  15. Black PN, Ahowesso C, Montefusco D, Saini N, Concetta C, DiRusso CC. Fatty acid transport proteins: targeting FATP2 as a gatekeeper involved in the transport of exogenous fatty acids. Medchemcomm. 2016;7:612–22.

    Article  CAS  Google Scholar 

  16. Abdullah D, Ping QN, Liu GJ. Enhancing effect of essential oils on the penetration of 5-fluorouracil through rat skin. Acta Pharma Sin. 1996;31:214–6.

    CAS  Google Scholar 

  17. Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’Emanuele A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm. 2003;252:263–6.

    Article  CAS  Google Scholar 

  18. Dong Z, Hamid KA, Gao Y, Lin Y, Katsumi H, Sakane T, et al. Polyamidoamine dendrimers can improve the pulmonary absorption of insulin and calcitonin in rats. J Pharm Sci. 2011;100:1866–78.

    Article  CAS  Google Scholar 

  19. Chengyun Y, jing W, Jiwei G, Daping H. The influence of molecular parameters of chitosan on pulmonary absorption of insulin loaded chitosan nanoparticles. Lat Am J Pharm. 2013;32:860–8.

    Google Scholar 

  20. Ho W, Furst A. Intratracheal instillation method for mouse lungs. Oncology. 1973;27:385–93.

    Article  CAS  Google Scholar 

  21. Okumura S, Fukuda Y, Takahashi K, Fujita T, Yamamoto A. Transport of drugs across the Xenopus pulmonary membrane and their absorption enhancement by various absorption enhancers. Pharmaceutical Research. 1996;13:1247–51.

    Article  CAS  Google Scholar 

  22. Sadekar S, Ghandehari H. Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery. Adv Drug Deliv Rev. 2012;64:571–88.

    Article  CAS  Google Scholar 

  23. Jevprasesphant R, Penny J, Attwood D, McKeown NB, D’Emanuele A. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm Res. 2003;20:1543–50.

    Article  CAS  Google Scholar 

  24. Yang Y, Sunoqrot S, Stowell C, Ji J, Lee C, Kim JW, et al. Effect of size, surface charge and hydrophobicity of poly(amidoamine) dendrimers on their skin penetration. Biomacromolecules. 2012;13:2154–62.

    Article  CAS  Google Scholar 

  25. Bharatwaj B, Mohammad AK, Dimovski R, Cassio FL, Bazito RC, Conti D, et al. Dendrimer nanocarriers for transport modulation across models of the pulmonary epithelium. Mol Pharm. 2015;12:826–38.

    Article  CAS  Google Scholar 

  26. Mendes LP, Pan J, Torchilin VP. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules. 2017;22:1401.

    Article  Google Scholar 

  27. Zhong Q, Merkel OM, Reineke JJ, Rocha SRP. Effect of the route of administration and PEGylation of poly (amidoamine) dendrimers on their systemic and lung cellular biodistribution. Mol Pharm. 2016;13:1866–78.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support of these programs.

Funding

This work was funded by National Natural Science Foundation of China (Grant No. 31860266). This study was also supported in part by Guangxi Provincial Natural Science Foundation of China (Grant No. 2018GXNSFAA281125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyun Yan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Gu, J., Lv, Y. et al. Caproyl-Modified G2 PAMAM Dendrimer (G2-AC) Nanocomplexes Increases the Pulmonary Absorption of Insulin. AAPS PharmSciTech 20, 298 (2019). https://doi.org/10.1208/s12249-019-1505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1505-x

KEY WORDS

Navigation