Skip to main content

Advertisement

Log in

Silk Fibroin as a Novel Alcohol-Resistant Excipient for Sustained-Release Tablet Formulation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Concomitant intake of alcoholic beverages with sustained-release oral formulations may potentially lead to dose dumping. Alcohol-resistance testing is currently a requirement for the manufacturers by regulatory authorities. Silk fibroin produced by silkworm Bombyx mori is suggested in this work as a potential alternative to a narrow spectrum of alcohol-resistant excipients. Oxycodone HCl, tramadol HCl, and flurbiprofen were selected as model drugs and formulated with regenerated silk fibroin either in the form of an amorphous solid dispersion or as a physical mixture and compressed into tablets. Preliminary compactability and tampering-resistance studies were performed. The ethanol-resistance was tested in media containing 5%, 10%, 20%, or 40% (v/v) ethanol concentration. Drug release profiles were compared using f2 similarity factor. Good mechanical tampering-resistance (tensile strength of 14.6 MPa at 400 MPa compression pressure) was obtained for tablets compressed from physical mixture. Tablets compressed from amorphous solid dispersion had lower tensile strength (2.2 MPa) but showed chemical tampering-resistance to extraction by pure ethanol (7.1% of oxycodone HCl after 24 h). Drug release is controlled predominantly by swelling and diffusion. With an increasing ethanol concentration in release medium, the tablets swelled less, resulting in a slower release. This trend was similar for all tested drugs and for both physical states formulations. No dose dumping occurred in the presence of ethanol; therefore, silk fibroin could be considered as an alternative alcohol-resistant excipient for sustained release application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Siepmann J, Siepmann F, Swarbrick J. Time-controlled drug delivery systems. Mod Pharm. 2009;2:1–22.

    Google Scholar 

  2. Meyer RJ, Hussain AS. FDA’s ACPS meeting, October 2005 awareness topic: mitigating the risks of ethanol induced dose dumping from oral sustained/controlled release dosage forms. [cited 2018 Jun 20]. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.534.5704&rep=rep1&type=pdf.

  3. Friebe TP, Hughes K, Hebestreit J-P, Rosiaux Y, Yunis M. Regulatory considerations for alcohol-induced dose dumping of oral modified-release formulations. Pharm Technol Eur. 2015;27:20–6 [cited 2018 Jun 20]. Available from: http://www.pharmtech.com/regulatory-considerations-alcohol-induced-dose-dumping-oral-modified-release-formulations.

    Google Scholar 

  4. Lennernäs H. Ethanol-drug absorption interaction: potential for a significant effect on the plasma pharmacokinetics of ethanol vulnerable formulations. Mol Pharm. 2009;6:1429–40 [cited 2018 Jun 20]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19655809.

    PubMed  Google Scholar 

  5. Walden M, Nicholls FA, Smith KJ, Tucker GT. The effect of ethanol on the release of opioids from oral prolonged-release preparations. Drug Dev Ind Pharm. 2007;33:1101–11 [cited 2018 Jun 18]. Available from: http://www.tandfonline.com/doi/full/10.1080/03639040701377292.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Traynor MJ, Brown MB, Pannala A, Beck P, Martin GP. Influence of alcohol on the release of tramadol from 24-h controlled-release formulations during in vitro dissolution experiments. Drug Dev Ind Pharm. 2008;34:885–9 [cited 2018 Jun 18]. Available from: http://www.tandfonline.com/doi/full/10.1080/03639040801929240.

    CAS  PubMed  Google Scholar 

  7. Kreek MJ. Opioid interactions with alcohol. Adv Alcohol Subst Abuse. 1984;3:35–46 [cited 2018 Oct 30]. Available from: http://www.tandfonline.com/doi/abs/10.1300/J251v03n04_04.

    CAS  PubMed  Google Scholar 

  8. Mastropietro DJ, Omidian H. Current approaches in tamper-resistant and abuse-deterrent formulations. Drug Dev Ind Pharm. 2013;39:611–24 [cited 2018 Jun 27]. Available from: http://www.tandfonline.com/doi/full/10.3109/03639045.2012.680468.

    CAS  PubMed  Google Scholar 

  9. Herz A. Endogenous opioid systems and alcohol addiction. Psychopharmacology (Berl). 1997;129:99–111 [cited 2018 Oct 30]. Available from: http://link.springer.com/10.1007/s002130050169.

    CAS  Google Scholar 

  10. Jedinger N, Khinast J, Roblegg E. The design of controlled-release formulations resistant to alcohol-induced dose dumping – a review. Eur J Pharm Biopharm. 2014;87:217–26 [cited 2018 Jun 18]. Available from: https://www.sciencedirect.com/science/article/pii/S0939641114000666.

    CAS  PubMed  Google Scholar 

  11. Avachat AM, Nandare DS. Effect of alcohol on drug release kinetics from HPMC-based matrix tablets using model drugs. Dissolution Technol. 2014;21:11–7 [cited 2018 Jun 18]. Available from: https://pdfs.semanticscholar.org/d850/d73ef2dec30d2d512c0fe857d0957029c719.pdf.

    CAS  Google Scholar 

  12. Roberts M, Cespi M, Ford JL, Dyas AM, Downing J, Martini LG, et al. Influence of ethanol on aspirin release from hypromellose matrices. Int J Pharm. 2007;332:31–7 [cited 2018 Jun 20]. Available from: https://www.sciencedirect.com/science/article/pii/S0378517306007903.

    CAS  PubMed  Google Scholar 

  13. Yucel T, Lovett ML, Kaplan DL. Silk-based biomaterials for sustained drug delivery. J Control Release. 2014;190:381–97 [cited 2018 Jun 18]. Available from: https://www.sciencedirect.com/science/article/pii/S016836591400385X.

    CAS  PubMed  Google Scholar 

  14. Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65:457–70. https://doi.org/10.1016/j.addr.2012.09.043.

    Article  CAS  PubMed  Google Scholar 

  15. Wenk E, Merkle HP, Meinel L. Silk fibroin as a vehicle for drug delivery applications. J Control Release. 2011;150:128–41. https://doi.org/10.1016/j.jconrel.2010.11.007.

    Article  CAS  PubMed  Google Scholar 

  16. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011;6:1612–31 [cited 2018 Jun 19]. Available from: http://www.nature.com/doifinder/10.1038/nprot.2011.379.

    CAS  PubMed  Google Scholar 

  17. Jin HJ, Kaplan DL. Mechanism of silk processing in insects and spiders. Nature. 2003;424:1057–61.

    CAS  Google Scholar 

  18. Heim M, Keerl D, Scheibel T. Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed. 2009;48:3584–96 [cited 2018 Jun 18]. Available from: http://doi.wiley.com/10.1002/anie.200803341.

    CAS  Google Scholar 

  19. Nam J, Park YH. Morphology of regenerated silk fibroin: effects of freezing temperature; alcohol addition, and molecular weight. J Appl Polym Sci. 2001;81:3008–21 [cited 2018 Jun 18]. Available from: http://doi.wiley.com/10.1002/app.1751.

    CAS  Google Scholar 

  20. Li M, Lu S, Wu Z, Yan H, Mo J, Wang L. Study on porous silk fibroin materials. I. Fine structure of freeze dried silk fibroin. J Appl Polym Sci. 2001;79:2185–91 [cited 2018 Jun 18]. Available from: http://doi.wiley.com/10.1002/1097-4628%2820010321%2979%3A12%3C2185%3A%3AAID-APP1026%3E3.0.CO%3B2-3.

    CAS  Google Scholar 

  21. Shen Y, Johnson MA, Martin DC. Microstructural characterization of Bombyx mori silk fibers. Macromolecules. 1998;31:8857–64 [cited 2018 Jun 18]. Available from: http://pubs.acs.org/doi/abs/10.1021/ma980281j.

    CAS  Google Scholar 

  22. Ling S, Qi Z, Knight DP, Shao Z, Chen X. Synchrotron FTIR microspectroscopy of single natural silk fibers. Biomacromolecules. 2011;12:3344–9 [cited 2018 Jun 18]. Available from: https://pubs.acs.org/doi/pdf/10.1021/bm2006032.

    CAS  PubMed  Google Scholar 

  23. Bartholomaeus JH, Arkenau-Marić E, Galia E. Opioid extended-release tablets with improved tamper-resistant properties. Expert Opin Drug Deliv. 2012;9:879–91 [cited 2018 Jun 19]. Available from: http://www.tandfonline.com/doi/full/10.1517/17425247.2012.698606.

    CAS  PubMed  Google Scholar 

  24. Fell JT, Newton JM. Determination of tablet strength by the diametral compression test. J Pharm Sci. 1970;59:688–91 [cited 2018 Jun 18]. Available from: http://onlinelibrary.wiley.com/doi/10.1002/jps.2600590523/full.

    CAS  Google Scholar 

  25. D’Souza S, Mayock S, Salt A. A review of in vivo and in vitro aspects of alcohol-induced dose dumping. AAPS Open. 2017;3:5 [cited 2018 Jun 26]. Available from: http://aapsopen.springeropen.com/articles/10.1186/s41120-017-0014-9.

    Google Scholar 

  26. Levitt MD, Li R, DeMaster EG, Elson M, Furne J, Levitt DG. Use of measurements of ethanol absorption from stomach and intestine to assess human ethanol metabolism. Am J Phys. 1997;273:G951–7 [cited 2018 Jun 18]. Available from: http://www.physiology.org/doi/10.1152/ajpgi.1997.273.4.G951.

    CAS  Google Scholar 

  27. Moore JW, Planner HH. Mathematical comparison of dissolution profiles. Pharm Technol. 1996;20:64–74 [cited 2018 Aug 1]. Available from: https://ci.nii.ac.jp/naid/10014530983/.

    Google Scholar 

  28. Li M, Ogiso M, Minoura N. Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials. 2003;24:357–65 [cited 2018 Jun 19]. Available from: https://www.sciencedirect.com/science/article/pii/S0142961202003265.

    CAS  PubMed  Google Scholar 

  29. Liu B, Song Y, Jin L, Wang Z, Pu D, Lin S, et al. Silk structure and degradation. Colloids Surf B Biointerfaces. 2015;131:122–8 [cited 2018 Jun 19]. Available from: https://www.sciencedirect.com/science/article/pii/S0927776515002593.

    CAS  PubMed  Google Scholar 

  30. Arai T, Freddi G, Innocenti R, Tsukada M. Biodegradation of Bombyx mori silk fibroin fibers and films. J Appl Polym Sci. 2004;91:2383–90 [cited 2018 Jun 19]. Available from: http://doi.wiley.com/10.1002/app.13393.

    CAS  Google Scholar 

  31. Katayama H, Issiki M, Yoshitomi H. Application of fibroin in controlled release tablets containing theophylline. Biol Pharm Bull. 2000;23:1229–34 [cited 2018 Jun 19]. Available from: http://pdf.lookchem.com/pdf/22/e72e0e3f-a478-42b7-acf1-fb86506de024.pdf.

    CAS  PubMed  Google Scholar 

  32. Hines DJ, Kaplan DL. Mechanisms of controlled release from silk fibroin films. Biomacromolecules. 2011;12:804–12 [cited 2019 Mar 23]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21250666.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schneider JP, Matthews M, Jamison RN. Abuse-deterrent and tamper-resistant opioid formulations. CNS Drugs. 2010;24:805–10 [cited 2018 Jun 27]. Available from: http://link.springer.com/10.2165/11584260-000000000-00000.

    CAS  PubMed  Google Scholar 

  34. Romach MK, Schoedel KA, Sellers EM. Update on tamper-resistant drug formulations. Drug Alcohol Depend. 2013;130:13–23 [cited 2018 Jun 27]. Available from: https://www.sciencedirect.com/science/article/pii/S0376871613000227.

    CAS  PubMed  Google Scholar 

  35. Leece P, Orkin AM, Kahan M. Tamper-resistant drugs cannot solve the opioid crisis. CMAJ. 2015;187:717–8 [cited 2018 Jun 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26124228.

    PubMed  PubMed Central  Google Scholar 

  36. Dashevskiy A, Bodmeier R, Fussnegger BD. Alcohol-induced dose dumping resistant matrix tablets with Kollidon ® SR. Poster Present AAPS Annu Meet 13–17112016, Denver. Poster presented at AAPS Annual Meeting, 13.-17.11.2016, Denver; 2016.

  37. Lenaerts V, Moussa I, Dumoulin Y, Mebsout F, Chouinard F, Szabo P, et al. Cross-linked high amylose starch for controlled release of drugs: recent advances. J Control Release. 1998;53:225–34 [cited 2018 Jun 18]. Available from: https://www.sciencedirect.com/science/article/pii/S0168365997002563.

    CAS  PubMed  Google Scholar 

  38. Ravenelle F, Rahmouni M. Contramid®: high-amylose starch for controlled drug delivery. 2006 [cited 2018 Jun 18]. p. 79–104. Available from: http://pubs.acs.org/doi/abs/10.1021/bk-2006-0934.ch004.

  39. Lin Y, Xia X, Shang K, Elia R, Huang W, Cebe P, et al. Tuning chemical and physical cross-links in silk electrogels for morphological analysis and mechanical reinforcement. Biomacromolecules. 2013;14:2629–35 [cited 2018 Jun 18]. Available from: http://pubs.acs.org/doi/10.1021/bm4004892.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kawahara Y, Shioya M, Takaku A. Influence of swelling of noncrystalline regions in silk fibers on modification with methacrylamide. J Appl Polym Sci. 1996;59:51–6 [cited 2018 Jun 18]. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1097-4628(19960103)59:1%3C51::AID-APP8%3E3.0.CO;2-L.

    CAS  Google Scholar 

  41. Holt S. Observations on the relation between alcohol absorption and the rate of gastric emptying. Can Med Assoc J. 1981;124:267–77 [cited 2019 Mar 15]. 297. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7459787.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cortot A, Jobin G, Ducrot F, Aymes C, Giraudeaux V, Modigliani R. Gastric emptying and gastrointestinal absorption of alcohol ingested with a meal. Dig Dis Sci. 1986;31:343–8 [cited 2019 Mar 15]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3956329.

    CAS  PubMed  Google Scholar 

  43. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, et al. Silk-based biomaterials. Biomaterials. 2003;24:401–16 [cited 2018 Aug 1]. Available from: https://www.sciencedirect.com/science/article/pii/S0142961202003538.

    CAS  Google Scholar 

  44. Chen J, Wang Q, Hua Z, Du G. Research and application of biotechnology in textile industries in China. Enzyme Microb Technol [Internet]. 2007 [cited 2018 Aug 1];40:1651–5. Available from: https://ac.els-cdn.com/S0141022906004029/1-s2.0-S0141022906004029-main.pdf?_tid=c892c8cc-97f8-4f61-8247-4ced2d8d3dda&acdnat=1533128511_d1623a89facac39446565ec5e101c689

  45. Lindman B, Karlström G, Stigsson L. On the mechanism of dissolution of cellulose. J Mol Liq. 2010;156:76–81 [cited 2018 Aug 8]. Available from: https://www.sciencedirect.com/science/article/pii/S0167732210001327.

    CAS  Google Scholar 

  46. Medronho B, Lindman B. Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Colloid Interf Sci. 2015;222:502–8 [cited 2018 Aug 8]. Available from: https://www.sciencedirect.com/science/article/pii/S0001868614001924.

    CAS  Google Scholar 

  47. Peng H, Dai G, Wang S, Xu H. The evolution behavior and dissolution mechanism of cellulose in aqueous solvent. J Mol Liq. 2017;241:959–66 [cited 2018 Aug 8]. Available from: https://www.sciencedirect.com/science/article/pii/S0167732217316367.

    CAS  Google Scholar 

Download references

Funding

This study was partially supported by the Charles University Grant Agency, project GA UK No. 850617/2017 and the Funding Agency of Charles University under Grant No. SVV 260 4

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alf Lamprecht.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozak, J., Rabiskova, M. & Lamprecht, A. Silk Fibroin as a Novel Alcohol-Resistant Excipient for Sustained-Release Tablet Formulation. AAPS PharmSciTech 20, 279 (2019). https://doi.org/10.1208/s12249-019-1494-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1494-9

KEY WORDS

Navigation