Skip to main content

Advertisement

Log in

Levofloxacin Hemihydrate In Situ Gelling Ophthalmic Solution: Formulation Optimization and In Vitro and In Vivo Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Bacterial conjunctivitis is a leading cause of ocular infections requiring short-term therapeutic treatment with frequent administration of drugs on daily basis. Topical dosage forms available in the market for the treatment of bacterial conjunctivitis such as simple drug solutions and suspensions are rapidly eliminated from the precorneal space upon instillation due to tear turn over and nasolacrimal drainage, limiting intraocular bioavailability of drug to less than 10% of the administered dose. To overcome issues related to conventional drop, an effort was made to design and evaluate prolong release ophthalmic solution of levofloxacin hemihydrate (LFH) using ion-sensitive in situ gelling polymer. Gellan gum was used as the in situ gelling agent. Formulations were screened based on in vitro gelation time, in vitro drug release, and stability towards sol to gel conversion upon storage. The prototype formulations exhibiting quick in vitro gelling time (< 15 s), prolonged in vitro drug release (18–24 h), and stability for at least 6 months at 25°C/40% relative humidity (RH) and 40°C/25% RH were evaluated for pharmacokinetic studies using healthy New Zealand white rabbits. Tested formulations were found to be well-tolerated and showed significant increase in AUC0–24 (22,660.39 h ng/mL) and mean residence time (MRT 12 h) as compared with commercially available solution Levotop PF® (Ajanta Pharma Ltd., India)(AUC0–24 6414.63 h ng/mL and MRT 4 h). Thus, solution formulations containing in situ gelling polymer may serve as improved drug delivery system providing superior therapeutic efficacy and better patient compliance for the treatment of bacterial conjunctivitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sonawane S, Lahoti S. Design and evaluation of ion induced in situ gel formulation for levofloxacin hemihydrate ocular delivery. Int J Pharm Sci Invent. 2014;3(11):38–43.

    Google Scholar 

  2. Gupta H, Aquil M, Khar R, Ali A. Nanoparticles laden in situ gel of levofloxacin for enhanced ocular retention. Drug Deliv. 2013;20(7):306–9. https://doi.org/10.3109/10717544.2013.838712.

    Article  CAS  PubMed  Google Scholar 

  3. Sapra P, Patel D, Soniwala M, Chavda J. Development and optimization of in situ periodental gel containing levofloxacin for the treatment of periodontal disease. J Sci Innov Res. 2013;2(3):608–27.

    Google Scholar 

  4. Want T, Huang X, Gao Q, Feng L, Xie Z, Jiang Z, et al. A preliminary study to treat severe endophthalmitis via a foldable capsular vitreous body with sustained levofloxacin release in rabbits. Invest Ophthalmol Vis Sci. 2013;54(1):804–12. https://doi.org/10.1167/iovs.12-9695.

    Article  CAS  Google Scholar 

  5. Mahesh N, Manjula B. Study of an alginate/HPMC based in-situ gelling ophthalmic delivery system for levofloxacin hydrochloride. Int J Pharm Pharm Sci. 2012;4(3):655–8.

    CAS  Google Scholar 

  6. Kumar G, Sharma S, Malhotra S. Optimization, in vitro-in vivo evaluation, and short-term tolerability of novel levofloxacin-loaded PLGA nanoparticle formulation. J Pharm Sci. 2012;101(6):2165–76. https://doi.org/10.1002/jps.23087.

    Article  CAS  PubMed  Google Scholar 

  7. Gevariya H, Patel J, Girhepunje K, Pal R. Sustained ophthalmic delivery of levofloxacin from once a day Ocuserts. Int J Pharm Pharm Sci. 2009;1(1):24–32.

    CAS  Google Scholar 

  8. Hosoya K, Lee V, Kim K. Roles of the conjunctiva in ocular drug delivery: a review of conjunctival transport mechanism and their regulation. Eur J Pharm Biopharm. 2005;60:227-40. https://doi.org/10.1016/j.ejpb.2004.12.007.

    Article  CAS  PubMed  Google Scholar 

  9. Yumei W, Liu Y, Li X, Kebebe D, Zhang B, Ren J, et al. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J Pharm Sci. 2019;2018:1–15. https://doi.org/10.1016/j.ajps.2018.04.008.

    Article  Google Scholar 

  10. Nirmal H, Bakliwal S, Pawar S. In-situ gel: new trends in controlled and sustained drug delivery system. Int J PharTech Res. 2010;2(2):1398–408.

    CAS  Google Scholar 

  11. Fakhari A, Corcoran M, Schwarz A. Thermogelling properties of purified poloxamer 407. Heliyon. 2017;3:1–26. https://doi.org/10.1016/j.heliyon.2017.e00390.

    Article  Google Scholar 

  12. Pereira G, Dimer F, Guterres S. Formulation and characterization of Poloxamer 407®: thermoreversisble gel containing polymeric microparticles and hyaluronic acid. Quim Nova. 2013;36(8):1121–5.

    Article  CAS  Google Scholar 

  13. Wen-Di M, Wang C, Nie S, Pan W. Pluronuc F127-g-poly (acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system. Int J Pharm. 2007;350:247–56. https://doi.org/10.1016/j.ijpharm.2007.09.005.

    Article  CAS  Google Scholar 

  14. Edsman K, Carfors J, Petersson R. Rheological evaluation of polxamer as an in situ gel for ophthalmic use. Eur J Pharm Sci. 1998;6:105–12.

    Article  CAS  Google Scholar 

  15. Srividya B, Cardoza R, Amin P. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J Control Release. 2001;73:205–11.

    Article  CAS  Google Scholar 

  16. Wu H, Liu Z, Peng J, Li L, Li N, Li J, et al. Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery. Int J Pharm. 2011;410:31–40. https://doi.org/10.1016/j.ijpharm.2011.03.007.

    Article  CAS  Google Scholar 

  17. Shashank N, Sogali B, Thakur R. Formulation and evaluation of pH triggered in situ ophthalmic gel of moxifloxacin hydrochloride. Int J Pharm Pharm Sci. 2012;4(2):452–9.

    Google Scholar 

  18. Robinson G, Manning CE, Morris ER. Conformation and physical properties of the bacterial polysaccharides gellan, welan and rhamsan. In: Dickinson E, editor. Food polymers, gels, and colloids. London: The Royal Society Chemistry; 1991. p. 22.

    Chapter  Google Scholar 

  19. Meng Y, Hong L, Jin J. A study on the gelation properties and rheological behavior of Gellan gum. Appl Mech Mater. 2013;284-287:20–4. https://doi.org/10.4028/www.scientific.net/AMM.284-287.20.

    Article  CAS  Google Scholar 

  20. Rupenthal I, Green C, Alany R. Comparision of ion-activated in situ gelling systems for ocular drug delivery. Part 1: physicochemical characterization and in vitro release. Int J Pharm 2011;411:469–77. https://doi.org/10.1016/j.ijpharm.2011.03.042, 69.

    Article  CAS  Google Scholar 

  21. Mandal S, Thimmasetty M, Prabhushankar G, Geetha M. Formulation and evaluation of an in situ gel forming ophthalmic formulation of moxifloxacin hydrochloride. Int J Pharm Investig. 2012;2(2):78–82.

    Article  CAS  Google Scholar 

  22. Kotreka U, Davis V, Adeyeye M. Development of topical ophthalmic in situ gel-forming estradiol delivery system intended for the pevention of age-related cataracts. PLoS One. 2017;12(2):1–19. https://doi.org/10.1371/journal.pone.0172306.

    Article  CAS  Google Scholar 

  23. Somasundaram S, Manivannan K. An overview of fluoroquinolones. Ann Rev Res Biol. 2013;3(3):296–313.

    CAS  Google Scholar 

  24. Chung J, Lim E, Song S, Kim B, Lee J, Mah F, et al. Comparative intraocular penetration of 4 fluoroquinolones after topical instillation. Cornea. 2013;32(7):1046–51.

    Article  Google Scholar 

  25. Dajcs J, Thibodeaux B, Marquart M, Girgis D, traidej M, O’Callaghan R. Effectiveness of ciprofloxacin, levofloxacin, or moxifloxacin for treatment of experimental Staphylococcus aureus keratitis. Animicrobial Agents Chemother. 2004;48(6):1948–52. https://doi.org/10.1128/AAC.48.6.1948-1952.2004.

    Article  CAS  Google Scholar 

  26. Shirkhedkar A. Quantitative determination of levofloxacin hemihydrate in bulk and tablets by UV-spectrophotometry and first order derivative methods. Pak J Pharm Sci. 2009;22(3):301–2.

    CAS  PubMed  Google Scholar 

  27. Gupta H, Aquil M, Khar R, Ali A, Chander P. A single reversed-phase UPLC method for quantification of levofloxacin in aqueous humor and pharmaceutical dosage forms. J Chromatogr Sci. 2010;48:484–90. https://doi.org/10.1093/chromsci/48.6.484.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang Z, Want T, Pan B, Xie Z, Wang P, Liu Y, et al. Evaluation of the levofloxacin release characters from a rabbit foldable capsular vitreous body. Int J Nanomedicine. 2012;7:1–10. https://doi.org/10.2147/IJN.S25268.

    Article  CAS  PubMed  Google Scholar 

  29. Yamada M, Mochizuki H, Yamada K, Kawai M, Mashima Y. Aqueous humor levels of topically applied levolfloxacin in human eyes. Curr Eye Res. 2002;24(5):403–6.

    Article  Google Scholar 

  30. OECD guidaline for testing of chemical, acute eye irritation/corrosion 405: 2017. https://www.oecd.org/env/test-no-405-acute-eye-irritation-corrosion-9789264185333-en.htm. Accessed 6 July 2019

  31. ICH. International Conference on Harmonization (ICH) of Technical requirements for Registration of Pharmaceuticals for Human Use. Harmonized triplicate guideline on stability testing of new drug substances and products Q1A (R2), approved for adoption at step 4 of ICH process on February 2003 by ICH steering committee. https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q1A_R2/Step4/Q1A_R2_Guideline.pdf . Accessed 6 July 2019

Download references

Funding

The authors would like to thank Lupin Ltd. (Research Park) Pune, for providing financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajeev Chandran.

Ethics declarations

Animal handling and studies were conducted in accordance with the Principles of Laboratory Animal Care (National Institutes of Health publication no 92–93, revised in 1985) and in conformation with guidelines of The Association for Research in Vision and Ophthalmology. The Institutional Animal Ethics Committee of Poona College of Pharmacy, Pune, India, approved the study (Protocol no: CPCSEA/PCP/PCL01/2018 and CPCSEA/PCP/PCL27/2018).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhalerao, H., Koteshwara, K.B. & Chandran, S. Levofloxacin Hemihydrate In Situ Gelling Ophthalmic Solution: Formulation Optimization and In Vitro and In Vivo Evaluation. AAPS PharmSciTech 20, 272 (2019). https://doi.org/10.1208/s12249-019-1489-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1489-6

KEY WORDS

Navigation