Skip to main content
Log in

Formulation and Characterization of Novel Dry Suspension and Dry Emulsion of 20(S)-Protopanaxadiol

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

To improve the absorption of poorly water-soluble 20(S)-protopanaxadiol (20(S)-PPD), novel 20(S)-PPD-loaded redispersible dry suspension and dry emulsion were developed in this study. 20(S)-PPD dry suspension (PPD-DS) was prepared by enabling drug fully dispersed with suspending agent Avicel CL611 and solubilizer Poloxamer 188. 20(S)-PPD dry emulsion (PPD-DE) was prepared by employing oleic acid as oil phase, Cremophor RH-40 as surfactant, and n-butyl alcohol as co-surfactant. Both PPD-DS and PPD-DE were evaluated for their physicochemical characterization after being dispersed in distilled water. The in vivo pharmacokinetics was evaluated by UPLC-MS/MS. The droplet size of PPD-DS and PPD-DE was in the scope of 1446–1653 nm and 652.8–784.5 nm. The sedimentation volume ratios of PPD-DS and PPD-DE were both at value of 1. The zeta potential of PPD-DS and PPD-DE were from − 53.7 to − 70.4 mV and − 27.5 to − 34.5 mV, respectively, which indicated stable systems. PPD-DS and PPD-DE both achieved dramatically enhanced aqueous solubility and higher perfusion of 20(S)-PPD in rats’ intestine. Although statistically, no oral bioavailability enhancements of 20(S)-PPD were achieved in PPD-DE and PPD-DS, there were some improvements in the pharmacokinetic behaviors. Especially, PPD-DS could be a promising drug delivery carrier for 20(S)-PPD with the advantages of long-term stability, dosing flexibility, and the convenience of administering to infants and to those who have difficulty swallowing tablets or capsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang BX, Cui JC, Liu AJ, Wu SK. Studies on the anti-fatigue effect of the saponins of stems and leaves of Panax ginseng (SSLG). J Tradit Chin Med. 1983;2:89–94.

    Google Scholar 

  2. Surh YJ, Lee JY, Chun KS, Na HK. Anti-tumor promoting effects of selected ginsenosides and their underlying molecular mechanisms. J Ginseng Res. 2002;10:343–50.

    Google Scholar 

  3. Popovich DG, Kitts DD. Structure–function relationship exists for ginsenosides in reducing cell proliferation and inducing apoptosis in the human leukemia (THP-1) cell line. Arch Biochem Biophys. 2002;406:1–8.

    CAS  PubMed  Google Scholar 

  4. Usami Y, Liu YN, Lin AS, Shibano M, Akiyama T, Itokawa H. Antitumor agents. 261. 20(S)-protopanaxadiol and 20(S)-protopanaxatriol as antiangiogenic agents and total assignment of 1H NMR spectra. J Nat Prod. 2008;71:478–81.

    CAS  PubMed  Google Scholar 

  5. Wang W, Zhao YQ, Rayburn ER, Hill DL, Wang H, Zhang RW. In vitro anti- cancer activity and structure–activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemother Pharmacol. 2007;59:589–601.

    CAS  PubMed  Google Scholar 

  6. Ben-Eltriki M, Deb S, Adomat H, Guns ES. Calcitriol and 20(S)-protopanaxadiol synergistically inhibit growth and induce apoptosis in human prostate cancer cells. J Steroid Biochem. 2015;158:207–19.

    Google Scholar 

  7. Xu C, Teng J, Chen W, Ge Q, Yang Z, Yu C, et al. 20(S)- protopanaxadiol, an active ginseng metabolite, exhibits strong antidepressantlike effects in animal tests. Prog Neuro-Psychopharmacol Biol Psychiatry. 2010;34:1402–11.

    CAS  Google Scholar 

  8. Chen GT, Yang X, Li JL, Ge HJ, Song Y, Ren J. Biotransformation of 20(S)-protopanaxadiol by Aspergillus Niger AS 3.1858. Fitoterapia. 2013;91:256–60.

    CAS  PubMed  Google Scholar 

  9. Xie FF, Li SW, Cheng ZN, Liu XL, Zhang H, Li PJ, et al. Determination of 20(s)-protopanaxadiol in human plasma by HPLC-MS/MS: application to a pharmacokinetic study. Acta Pharm Sin B. 2013;3(6):385–91.

    Google Scholar 

  10. Chen C, Wang LS, Cao FR, Miao XQ, Chen TK, Chang Q, et al. Formulation of 20(s)-protopanaxadiol nanocrystals to improve oral bioavailability and brain delivery. Int J Pharm. 2016;497:239–47.

    CAS  PubMed  Google Scholar 

  11. Chiu NTC, Guns EST, Adomat H, Jia W, Deb S. Identification of human cytochrome P450 enzymes involved in the hepatic and intestinal biotransformation of 20(S)-protopanaxadiol. Biopharm Drug Dispos. 2013;35:104–18. https://doi.org/10.1002/bdd.1873.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Q, Pu YQ, Wang B, Wang YQ, Dong T, Guo T, et al. Characterization, molecular docking, and In vitro dissolution studies of solid dispersions of 20(S)-protopanaxadiol. Molecules. 2017;22:274.

    PubMed Central  Google Scholar 

  13. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420:1–10.

    CAS  PubMed  Google Scholar 

  14. Wang B, Pu YQ, Xu BL, Tao JS, Wang YQ, Zhang T, et al. Self-microemulsifying drug delivery system improved oral bioavailability of 20(S)-protopanxadiol: from preparation to evaluation. Chem Pharm Bull. 2015;63:688–93.

    CAS  Google Scholar 

  15. Zhu KX, Chen YX, Zhang T, Tao JS, Wang B. Study on preparation and release in vitro of 20(S)-protopanaxadiol complex microspheres. J Math Med. 2015;28:813–5 (in Chinese).

    CAS  Google Scholar 

  16. Wang B, Pu YQ, Tao JS, Xu BL, Zhang T. Determination and in vitro evaluation of 20(S)-PPD tablets. Chin J Exp Tradit Med Formulae. 2011;17:89–94 (in Chinese).

    Google Scholar 

  17. Pu YQ, Zhang XT, Zhang Q, Wang B, Chen YX, Zang CQ, et al. 20(S)-Protopanaxadiol phospholipid complex: process optimization, characterization, in vitro dissolution and molecular docking studies. Molecules. 2016;21:1396.

    PubMed Central  Google Scholar 

  18. Wang B, Zang CQ, Chen YX, Tao JS, Zhang T. Preparation of 20(S)-protopanaxadiol-phospholipid complex HAP assemblies. J Chin Med Mater. 2014;37:2282–5 (in Chinese).

    CAS  Google Scholar 

  19. Raj SP, Angela LS. Stability of marketed albendazole suspensions and correlation between zeta potential and sedimentation. Int Res J Pharm. 2011;2(3):154–6.

    Google Scholar 

  20. Arshady R. Suspension, emulsion, and dispersion polymerization: a methodological survey. Colloid Polym Sci. 1992;170:717–32.

    Google Scholar 

  21. Patil SK, Wagh KS, Parik VB, Akarte AM, Baviskar DT. Strategies for solubility enhancement of poorly soluble drugs. Int J Pharm Sci Rev Res. 2011;8(2):74–80.

  22. Patel HM, Patel BB, Shah CN. Nanosuspension: a novel approach to enhance solubility of poorly water soluble drugs – a review. Int J Adv Pharm. 2016;5(2):21–9.

    Google Scholar 

  23. Naeini YS, Aminzare M, Golestani-Fard F, Khorasanizadeh F, Salahi E. Suspensions stability of Titania nanoparticles studied by UV-VIS spectroscopy method. Iran J Mater Sci. 2012;9(1):62–8.

  24. Tharwat T. Polymeric surfactants in disperse systems. Adv Colloid Interf Sci. 2009;147–148:281–99.

    Google Scholar 

  25. Wang L, Sun YH, Kuang C, Zhang XR. Preparation and evaluation of taste masked oral suspension of arbidol hydrochloride. A J Pharm Sci. 2015;10:73–9.

    Google Scholar 

  26. Goibier L, Lecomte S, Leal-Calderon F, Faure C. The effect of surfactant crystallization on partial coalescence in O/W emulsions. J Colloid Interface Sci. 2017;500:304–14.

    CAS  PubMed  Google Scholar 

  27. Pongsamart K, Kleinebudde P, Puttipipatkhachorn S. Preparation of fenofibrate dry emulsion and dry suspension using octenyl succinic anhydride starch as emulsifying agent and solid carrier. Int J Pharm. 2016;498:347–54.

    CAS  PubMed  Google Scholar 

  28. Hauss DJ, Fogal SE, Ficorilli JV, Price CA, Roy T, Jayaraj AA, et al. Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J Pharm Sci. 1998;87(2):164–9.

    CAS  PubMed  Google Scholar 

  29. Cui F, Wang YS, Wang JM, Feng LL, Ning KJ. Preparation of redispersible dry emulsion using Eudragit E 100 as both solid carrier and unique emulsifier. Colloids Surf A Physicochem Eng Asp. 2007;307:137–41.

    CAS  Google Scholar 

  30. Pohlen M, Pirker L, Lustrik M, Dreu R. A redispersible dry emulsion system with simvastatin prepared via fluid bed layering as a means of dissolution enhancement of a lipophilic drug. Int J Pharm. 2018;549:325–34.

    CAS  PubMed  Google Scholar 

  31. Zhang JJ, Gao Y, Qian S, Liu X, Zu H. Physicochemical and pharmacokinetic characterization of a spray-dried malotilate emulsion. Int J Pharm. 2011;414:186–92.

    CAS  PubMed  Google Scholar 

  32. Mehanna MM, Alwattar JK, Elmaradny HA. Optimization, physicochemical characterization and in vivo assessment of spray dried emulsion: a step toward bioavailability augmentation and gastric toxicity minimization. Int J Pharm. 2015;496:766–79.

    CAS  PubMed  Google Scholar 

  33. Mao JJ, Zhang T, Wang B, Tao JS. Prescription of 20(S)-protopanaxadiol for suspension. Chin Tradit Pat Med. 2012;34(9):1680–4 (in Chinese).

  34. Du YQ, Zhai YL, Zhang JH, Wu CN, Luo C, Sun J, et al. Development and evaluation of taste-masked dry suspension of cefuroxime axetil for enhancement of oral bioavailability. Asian J Pharm Sci. 2013;8:287–94.

    Google Scholar 

  35. Rao M, Aghav S. Spray-dried redispersible emulsion to improve oral bioavailability of Itraconazole. J Surfactant Deterg. 2014;17:807–17.

    CAS  Google Scholar 

  36. Yin YM, Cui FD, Kim JS, Choi MK, Choi BC, Chung SJ, et al. Preparation, characterization and in vitro intestinal absorption of a dry emulsion formulation containing atorvastatin calcium. Drug Deliv. 2009;16(1):30–6.

    PubMed  Google Scholar 

  37. Moghimipour E, Salimi A, Leis F. Preparation and evaluation of tretinoin microemulsion based on pseudo-ternary phase diagram. Adv Pharm Bull. 2012;2(2):141–7.

    PubMed  PubMed Central  Google Scholar 

  38. Garg A, Bhalala K, Tomar DS, Wahajuddin. In-situ single pass intestinal perfusion and pharmacokinetic study of developed Lumefantrine loaded solid lipid nanoparticles. Int J Pharm. 2017;516:120–30.

    CAS  PubMed  Google Scholar 

  39. Niczinger NA, Kallai-Szabo B, Lengyel M, Gordon P, Klebovich I, Antal I. Physicochemical analysis in the evaluation of reconstituted dry emulsion tablets. J Pharm Biomed Anal. 2017;134:86–93.

    CAS  PubMed  Google Scholar 

  40. Kommuru TR, Gurley B, Khan MA, Reddy IK. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm. 2001;212:233–46.

    CAS  PubMed  Google Scholar 

  41. Lnaggar YS, El-Massik MA, Abdallah OY. Self-nanoemulsifying drug delivery systems of tamoxifen citrate:design and optimization. Int J Pharm. 2009;380:133–41.

    Google Scholar 

  42. Balakumar K, Raghavan CV, Selvan NT, Prasad RH, Abdu S. Self nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf B: Biointerfaces. 2013;112:337–43.

    CAS  PubMed  Google Scholar 

  43. Xi J, Chang Q, Chan CK, Meng ZY, Wang GN, Sun JB, et al. Formulation development and bioavailability evaluation of a self nano-emulsified drug delivery system of oleanolic acid. AAPS PharmSciTech. 2009;10:172–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nor S, Woi P, Ng S. Characterisation of ionic liquids nanoemulsion loaded with piroxicam for drug delivery system. J Mol Liq. 2017;234:30–9.

    Google Scholar 

  45. Shakeel F, Haqa N, Alanazi FK, Alsarra IA. Polymeric solid self-nanoemulsifying drug delivery system of glibenclamide using coffee husk as a low cost biosorbent. Powder Technol. 2014;256:352–60.

    CAS  Google Scholar 

  46. Badran MM, Taha EI, Tayel MM, Al-Suwayeh SA. Ultra-fine self- nanoemulsifying drug delivery system for transdermal delivery of meloxicam: dependency on the type of surfactants. J Mol Liq. 2014;190:16–22.

    CAS  Google Scholar 

  47. Agrawal AG, Kumar A, Gide PS. Formulation of solid self-nanoemulsifying drug delivery systems using N-methyl pyrrolidone as cosolvent. Drug Dev Ind Pharm. 2015;41:594–604.

    CAS  PubMed  Google Scholar 

  48. Bergstrom CAS, Holm R, Jorgensen SA, Andersson SBE, Artursson P, Beato S. Early pharmaceutical profiling to predict oral drug absorption: current status and unmet needs. Eur J Pharm Sci. 2014;57:173–99.

    CAS  PubMed  Google Scholar 

  49. Ogaji IJ, Hoag SW. Effect of grewia gum as a suspending agent on ibuprofen pediatric formulation. AAPS PharmSciTech. 2011;12(2):507–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fedele L, Colla L, Bobbo S. Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles. Int J Refrig. 2012;35:1359–66.

    CAS  Google Scholar 

  51. Xia HJ, Zhang ZH, Jin X, Hu Q, Chen XY, Jia XB. A novel drug-phospholipid complex enriched with micelles: preparation and evaluation in vitro and in vivo. Int J Nanomedicine. 2013;8:545–54.

    PubMed  PubMed Central  Google Scholar 

  52. Han MH, Chen J, Chen SL, Wang XT. Development of a UPLC-ESI-MS/MS assay for 20(S)-Protopanaxadiol and pharmacokinetic application of its two formulations in rats. Anal Sci. 2010;26:749–53.

    CAS  PubMed  Google Scholar 

  53. Kumar RS, Yagnesh NS. Pharmaceutical suspensions: patient compliance oral dosage forms. World J Pharm Sci. 2016;5(12):1471–537.

  54. Beg S, Swain S, Singh HP, Patra Ch N, Rao ME. Development, optimization, and characterization of solid self-nanoemulsifying drug delivery systems of valsartan using porous carriers. AAPS PharmSciTech. 2012;13:1416–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Christensen KL, Pedersen GP, Kristensen HG. Preparation of redispersible dry emulsions by spray drying. Int J Pharm. 2001;212:187–94.

    CAS  PubMed  Google Scholar 

  56. Yang Y, Fan CM, He X, Ren K, Zhang JK, He YJ, et al. Study on biopharmaceutics classification and oral bioavailability of a novel multikinase inhibitor NCE for cancer therapy. Int J Mol Sci. 2014;15:7199–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ge Z, Zhang XX, Gan L, Gan Y. Redispersible, dry emulsion of lovastatin protects against intestinal metabolism and improves bioavailability. Acta Pharmacol Sin. 2008;29(8):990–7.

    CAS  PubMed  Google Scholar 

  58. Barve PJR, KH. Intestinal perfusion of lamivudine using single pass intestinal perfusion. Indian J Pharm Sci. 2012;74(5):478–81.

    PubMed  PubMed Central  Google Scholar 

  59. Ali W, Williams AC, Rawlinson CF. Stochiometrically governed molecular interactions in drug: poloxamer solid dispersions. Int J Pharm. 2010;391(31):162–8.

    CAS  PubMed  Google Scholar 

  60. Pu XH, Sun J, Li M, He ZG. Formulation of nanosuspensions as a new approach for the delivery of poorly soluble drugs. Curr Nanosci. 2009;5:417–27.

    CAS  Google Scholar 

  61. Keservani RK, Kesharwani R, Gujarathi NA, Sharma AK. Formulation and characterization of Piroxicam reconstituted suspension. IJPI J Pharm Cosmet. 2011;3(1):69–76.

  62. Marina G, Elena M, Carlotti ME, Michele T, Philippe P. Formulation of dry emulsion for topical applications. J Dispers Sci Technol. 2009;30(6):823–33.

    Google Scholar 

  63. Amidon GE, Higuchi WI, Ho NFH. Theoretical and experi- mental studies of transport of micelle-solubilized solutes. J Pharm Sci. 1982;71(1):77–84.

    CAS  PubMed  Google Scholar 

  64. Miller JM, Beig A, Krieg BJ, Carr RA, Borchardt TB, Amidon GE, et al. The solubility–permeability interplay: mechanistic modeling and predictive application of the impact of micellar solubilization on intestinal permeation. Mol Pharm. 2011;8(5):1848–56.

    CAS  PubMed  Google Scholar 

  65. Poelma FGJ, Breäs R, Tukker JJ. Intestinal absorption of drugs. III. The influence of taurocholate on the disappearance kinetics of hydrophilic and lipophilic drugs from the small intestine of the rat. Pharm Res. 1990;7(4):392–7.

    CAS  PubMed  Google Scholar 

  66. Poelma FGJ, Breäs R, Tukker JJ, Crommelin DJA. Intestinal absorption of drugs. The influence of mixed micelles on the disappearance kinetics of drugs from the small intestine of the rat. J Pharm Pharmacol. 1991;43(5):317–24.

    CAS  PubMed  Google Scholar 

  67. Yano K, Masaoka Y, Kataoka M, Sakuma S, Yamashita S. Mechanisms of membrane transport of poorly soluble drugs: role of micelles in oral absorption processes. J Pharm Sci. 2010;99(3):1336–45.

    CAS  PubMed  Google Scholar 

  68. Miller JM, Beig A, Carr RA, Spence JK, Dahan A. A win-win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. Mol Pharm. 2012;9:2009–16.

    CAS  PubMed  Google Scholar 

  69. Dahan A, Beig A, Ioffe-Dahan V, Agbaria R, Miller J. The twofold advantage of the amorphous form as an oral drug delivery practice for lipophilic compounds: increased apparent solubility and drug flux through the intestinal membrane. AAPS J. 2013;15:347–53.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Program of Shanghai Committee of Science and Technology (Grant No. 18401931400), Program of Shanghai Academic/Technology Research Leader (Grant No. 18XD1403700), National Scientific and Technological Major Special Project of China (Grant No. 2018ZX09201008-002), and Scientific Research Program of Shanghai University of Traditional Chinese Medicine (Grant No. 18TS087).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiqiong Pu or Tong Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Xu, C., Mao, J. et al. Formulation and Characterization of Novel Dry Suspension and Dry Emulsion of 20(S)-Protopanaxadiol. AAPS PharmSciTech 20, 275 (2019). https://doi.org/10.1208/s12249-019-1487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1487-8

KEY WORDS

Navigation