Skip to main content
Log in

A Multiscale Study on the Effect of Sodium Cholate on the Deformation Ability of Elastic Liposomes

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Elastic liposoxy1mes (ELs) are biocompatible bilayer vesicular systems commonly used in the transdermal delivery of drugs. Compared with conventional liposomes (CLs), the strong deformation ability conferred by edge activators (EAs) is one of the most critical properties of ELs. However, due to limited research methods, little is known about the effect of EAs on the deformation abilities of vesicles. In this study, taking sodium cholate as an example, a multiscale study was carried to study the effect of EAs on the deformability of ELs, including in vitro diffusion experiment at macroscale, “vesicle-pore” model experiment at the microscale and flat patch model experiment at the molecular scale. As a result, it was found that sodium cholate could decrease the kc of DPPC bilayer, which enabled it to remain morphologically intact during a strong deformation process. Such kind of differences on deformation ability made pogostone ELs (contain sodium cholate) present a better permeation effect compared with that of pogostone CLs. All of these provide a multiscale and thorough understanding of the effect of sodium cholate on the deformation ability of ELs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Benson HA. Elastic liposomes for topical and transdermal drug delivery. Curr Drug Delivery. 2009;6(3):217–26.

    CAS  Google Scholar 

  2. Hussain A, Singh S, Sharma D, Webster TJ, Shafaat K, Faruk A. Elastic liposomes as novel carriers: recent advances in drug delivery. Int J Nanomedicine. 2017;12:5087–08.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T. Evaluation of meloxicam-loaded cationic transfersomes as transdermal drug delivery carriers. AAPS PharmSciTech. 2013;14(1):133–40.

    CAS  PubMed  Google Scholar 

  4. Garg V, Singh H, Bhatia A, Raza K, Singh SK, Singh B, et al. Systematic development of transethosomal gel system of piroxicam: formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS PharmSciTech. 2017;18(1):58–71.

    CAS  PubMed  Google Scholar 

  5. Utreja P, Jain S, Tiwary AK. Evaluation of biosafety and intracellular uptake of Cremophor EL free paclitaxel elastic liposomal formulation. Drug Deliv. 2012;19(1):11–20.

    CAS  PubMed  Google Scholar 

  6. Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, et al. Formulation and characterization of novel soft nanovesicles for enhanced transdermal delivery of eprosartan mesylate. Saudi Pharm J. 2017;25(7):1040–6.

    PubMed  PubMed Central  Google Scholar 

  7. Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M, Ali A. Formulation and optimization of nanotransfersomes using experimental design technique for accentuated transdermal delivery of valsartan. Nanomedicine. 2012;8(2):237–49.

    CAS  PubMed  Google Scholar 

  8. Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta Biomembr. 1992;1104(1):226–32.

    CAS  Google Scholar 

  9. Cevc G, Gebauer D, Stieber J, Schätzlein A, Blume G. Ultraflexible vesicles, transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim Biophys Acta Biomembr. 1998;1368(2):201–15.

    CAS  Google Scholar 

  10. Chen J, Lu WL, Gu W, Lu SS, Chen ZP, Cai BC. Skin permeation behavior of elastic liposomes: role of formulation ingredients. Expert Opin Drug Deliv. 2013;10(6):845–56.

    CAS  PubMed  Google Scholar 

  11. Benson HA. Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv. 2006;3(6):727–37.

    CAS  PubMed  Google Scholar 

  12. Al Shuwaili AH, Rasool BK, Abdulrasool AA. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur J Pharm Biopharm. 2016;102:101–14.

    PubMed  Google Scholar 

  13. Subongkot T, Pamornpathomkul B, Rojanarata T, Opanasopit P, Ngawhirunpat T. Investigation of the mechanism of enhanced skin penetration by ultradeformable liposomes. Int J Nanomedicine. 2014;9:3539–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang YT, Xu YM, Zhang SJ, Zhao JH, Wang Z, Xu DQ, et al. In vivo microdialysis for the evaluation of transfersomes as a novel transdermal delivery vehicle for cinnamic acid. Drug Dev Ind Pharm. 2014;40(3):301–7.

    CAS  PubMed  Google Scholar 

  15. Ntimenou V, Fahr A, Antimisiaris SG. Elastic vesicles for transdermal drug delivery of hydrophilic drugs: a comparison of important physicochemical characteristics of different vesicle types. J Biomed Nanotechnol. 2012;8(4):613–23.

    CAS  PubMed  Google Scholar 

  16. Alvi IA, Madan J, Kaushik D, Sardana S, Pandey RS, Ali A. Comparative study of transfersomes, liposomes, and niosomes for topical delivery of 5-fluorouracil to skin cancer cells: preparation, characterization, in-vitro release, and cytotoxicity analysis. Anti-Cancer Drugs. 2011;22(8):774–82.

    CAS  PubMed  Google Scholar 

  17. Duangjit S, Obata Y, Sano H, Onuki Y, Opanasopit P, Ngawhirunpat T, et al. Comparative study of novel ultradeformable liposomes: menthosomes, transfersomes and liposomes for enhancing skin permeation of meloxicam. Biol Pharm Bull. 2014;37(2):239–47.

    CAS  PubMed  Google Scholar 

  18. El Zaafarany GM, Awad GA, Holayel SM, Mortada ND. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm. 2010;397(1–2):164–72.

    PubMed  Google Scholar 

  19. Jain SK, Gupta Y, Jain A, Rai K. Enhanced transdermal delivery of acyclovir sodium via elastic liposomes. Drug Deliv. 2008;15(3):141–7.

    CAS  PubMed  Google Scholar 

  20. Uchino T, Lefeber F, Gooris G, Bouwstra J. Characterization and skin permeation of ketoprofen-loaded vesicular systems. Eur J Pharm Biopharm. 2014;86(2):156–66.

    CAS  PubMed  Google Scholar 

  21. Gonzalez-Rodriguez ML, Arroyo CM, Cozar-Bernal MJ, Gonzalez RP, Leon JM, Calle M, et al. Deformability properties of timolol-loaded transfersomes based on the extrusion mechanism. Statistical optimization of the process. Drug Dev Ind Pharm. 2016;42(10):1683–94.

    CAS  PubMed  Google Scholar 

  22. Marrink SJ, Corradi V, Souza PCT, Ingolfsson HI, Tieleman DP, Sansom MSP. Computational modeling of realistic cell membranes. Chem Rev. 2019;119:6184–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hossain MS, Berg S, Bergstrom CAS, Larsson P. Aggregation behavior of medium chain fatty acids studied by coarse-grained molecular dynamics simulation. AAPS PharmSciTech. 2019;20(2):61.

    PubMed  PubMed Central  Google Scholar 

  24. Watson MC, Morriss-Andrews A, Welch PM, Brown FL. Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers. II. Finite surface tensions. J Chem Phys. 2013;139(8):084706.

    PubMed  Google Scholar 

  25. Watson MC, Brandt EG, Welch PM, Brown FL. Determining biomembrane bending rigidities from simulations of modest size. Phys Rev Lett. 2012;109(2):028102.

    PubMed  Google Scholar 

  26. Levine ZA, Venable RM, Watson MC, Lerner MG, Shea JE, Pastor RW, et al. Determination of biomembrane bending moduli in fully atomistic simulations. J Am Chem Soc. 2014;136(39):13582–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Leonard AN, Wang E, Monje-Galvan V, Klauda JB. Developing and testing of lipid force fields with applications to modeling cellular membranes. Chem Rev. 2019;119:6227–69.

    CAS  PubMed  Google Scholar 

  28. Brannigan G, Brown FL. A consistent model for thermal fluctuations and protein-induced deformations in lipid bilayers. Biophys J. 2006;90(5):1501–20.

    CAS  PubMed  Google Scholar 

  29. Arnarez C, Uusitalo JJ, Masman MF, Ingolfsson HI, de Jong DH, Melo MN, et al. Dry martini, a coarse-grained force field for lipid membrane simulations with implicit solvent. J Chem Theory Comput. 2015;11(1):260–75.

    CAS  PubMed  Google Scholar 

  30. Marrink SJ, de Vries AH, Mark AE. Coarse grained model for semiquantitative lipid simulations. J Phys Chem B. 2004;108(2):750–60.

    CAS  Google Scholar 

  31. Ma L, Wu Z, Yang C, Guo S, Chen L, Qiao Y, et al. Preparation and quaility evaluation of pogostone transfersomes. China Pharmacy. 2019;30(01):50–4.

    Google Scholar 

  32. Chen H, Li Y, Wu X, Li C, Li Q, Qin Z, et al. LC-MS/MS determination of pogostone in rat plasma and its application in pharmacokinetic studies. Biomed Chromatogr. 2013;27(9):1092–9.

    CAS  PubMed  Google Scholar 

  33. Wang X, Zou Y, Wang Y. GC-MS assay for the determination of pogostone in essential oil of herba pogostemis. Chinese Journal of Pharmaceutical Analysis. 2005;30(5):546–9.

    Google Scholar 

  34. Cheng X, Jo S, Lee HS, Klauda JB, Im W. CHARMM-GUI micelle builder for pure/mixed micelle and protein/micelle complex systems. Journal of Chemical Information & Modeling. 2013;53(8):2171–80.

    CAS  Google Scholar 

  35. Martínez L, Andrade R, Birgin EG, Martínez JM. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem. 2010;30(13):2157–64.

    Google Scholar 

  36. David VDS, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. J Comput Chem. 2010;26(16):1701–18.

    Google Scholar 

  37. Harmandaris VA, Deserno M. A novel method for measuring the bending rigidity of model lipid membranes by simulating tethers. J Chem Phys. 2006;125(20):204905.

    PubMed  Google Scholar 

  38. Khelashvili G, Kollmitzer B, Heftberger P, Pabst G, Harries D. Calculating the bending modulus for multicomponent lipid membranes in different thermodynamic phases. J Chem Theory Comput. 2013;9(9):3866–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Garcia RS, Bezlyepkina N, Knorr RL, Lipowsky R, Dimova R. Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles. Soft Matter. 2010;6(7):1472–82.

    Google Scholar 

  40. Chen Z, Rand RP. The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys J. 1997;73(1):267–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J. 2000;79(1):328–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Stephanie TN, Nagle JF. HIV-1 fusion peptide decreases bending energy and promotes curved fusion intermediates. Biophys J. 2007;93(6):2048–55.

    Google Scholar 

  43. Klauda JB, Venable RM, Freites JA, O'Connor JW, Tobias DJ, Mondragon-Ramirez C, et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B. 2010;114(23):7830–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Braun AR, Sachs JN, Nagle JF. Comparing simulations of lipid bilayers to scattering data: the GROMOS 43A1-S3 force field. J Phys Chem B. 2013;117(17):5065–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Melo MN, Ingólfsson HI, Marrink SJ. Parameters for martini sterols and hopanoids based on a virtual-site description. J Chem Phys. 2015;143(24):243152.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The content is solely the responsibility of the authors and does not necessarily represent the official views of the Beijing Natural Science Foundation. All simulations were performed at the National Supercomputer Center in Guangzhou.

Funding

This work was financially supported by the Beijing Natural Science Foundation (7162122).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanjiang Qiao or Xinyuan Shi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 170 kb)

ESM 2

PMF profile and vesicle morphology comparison of 5 Groups with different combination of rv and rp. (PNG 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Yang, C., Chen, L. et al. A Multiscale Study on the Effect of Sodium Cholate on the Deformation Ability of Elastic Liposomes. AAPS PharmSciTech 20, 311 (2019). https://doi.org/10.1208/s12249-019-1485-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1485-x

Keywords

Navigation