Skip to main content
Log in

Quality by Design Approach for the Development of Self-Emulsifying Systems for Oral Delivery of Febuxostat: Pharmacokinetic and Pharmacodynamic Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The goal of the present investigation is to formulate febuxostat (FXT) self-nanoemulsifying delivery systems (liquid SNEDDS, solid SNEDDS, and pellet) to ameliorate the solubility and bioavailability. To determine the self-nanoemulsifying region, ternary plot was constructed utilizing Capmul MCM C8 NF® as an oil phase, Labrasol® as principal surfactant, and Transcutol HP® being the co-surfactant. Liquid SNEDDS (L-SNEDDS) were characterized by evaluating droplet size, zeta potential, % transmission, and for thermodynamic stability. In vitro dissolution study of FXT loaded L-SNEDDS (batch F7) showed increased dissolution (about 48.54 ± 0.43% in 0.1 N HCl while 86.44 ± 0.16% in phosphate buffer pH 7.4 within 30 min) compared to plain drug (19.65 ± 2.95% in 0.1 N HCl while about 17.61 ± 2.63% in phosphate buffer pH 7.4 within 30 min). Single pass intestinal permeability studies revealed fourfold increase in the intestinal permeability of F7 compared to plain drug. So, for commercial aspects, F7 was further transformed into solid SNEDDS (S-SNEDDS) as readily nanoemulsifying powder form (SNEP) as well as pellets prepared by application of extruder spheronizer. The developed formulation was found superior to pure FXT with enhanced oral bioavailability and anti-gout activity (with reduced uric acid levels), signifying a lipidic system being an efficacious substitute for gout treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Love BL, Barrons R, Veverka A, Snider KM. Urate-lowering therapy for gout: focus on febuxostat. Pharmacotherapy. 2010;30:594–608.

    CAS  PubMed  Google Scholar 

  2. Khosravan R, Grabowski B, Wu JT, Joseph-Ridge N, Vernillet L. Effect of food or antacid on pharmacokinetics and pharmacodynamics of febuxostat in healthy subjects. Br J Clin Pharmacol. 2008;65:355–63.

    CAS  PubMed  Google Scholar 

  3. Varsha M, Divekar B. Solubility enhancement and formulation of rapid disintegrating tablet of febuxostat cyclodextrin complex. BioMedRxBioMedRx [Internet]. 2013 [cited 2019 Jan 26];11:168–75. Available from: http://jprsolutions.info/files/final-file-56971b34f08349.53345893.pdf. Accessed 20 Jul 2019.

  4. Maddileti D, Jayabun SK, Nangia A. Soluble cocrystals of the xanthine oxidase inhibitor febuxostat. Cryst Growth Des. 2013;13:3188–96.

    CAS  Google Scholar 

  5. Kumar K, Srinivas L, Kishore V, Basha S. Formulation and evaluation of poorly soluble febuxostat orodispersable tablet. AjaddCoUk. 2014;2:191–202.

    CAS  Google Scholar 

  6. Ahuja BK, Jena SK, Paidi SK, Bagri S, Suresh S. Formulation, optimization and in vitro-in vivo evaluation of febuxostat nanosuspension. Int J Pharm. 2015;478:540–52.

    CAS  PubMed  Google Scholar 

  7. Seo YG, Kim DH, Ramasamy T, Kim JH, Marasini N, Oh YK, et al. Development of docetaxel-loaded solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced chemotherapeutic effect. Int J Pharm. 2013;452:412–20.

    CAS  PubMed  Google Scholar 

  8. Christophersen PC, Christiansen ML, Holm R, Kristensen J, Jacobsen J, Abrahamsson B, et al. Fed and fasted state gastro-intestinal in vitro lipolysis: in vitro in vivo relations of a conventional tablet, a SNEDDS and a solidified SNEDDS. Eur J Pharm Sci. 2014;57:232–9.

    CAS  PubMed  Google Scholar 

  9. Islambulchilar Z, Valizadeh H, Zakeri-Milani P. Systematic development of DoE optimized SNEDDS of sirolimus with enhanced intestinal absorption. J Drug Deliv Sci Technol. 2014;24:620–7.

    CAS  Google Scholar 

  10. Mahmoud DB, Shukr MH, Bendas ER. In vitro and in vivo evaluation of self-nanoemulsifying drug delivery systems of cilostazol for oral and parenteral administration. Int J Pharm. 2014;476:60–9.

    CAS  PubMed  Google Scholar 

  11. Akhtar N, Talegaonkar S, Ahad A, Khar RK, Jaggi M. Potential of a novel self nanoemulsifying carrier system to overcome P-glycoprotein mediated efflux of etoposide: in vitro and ex vivo investigations. J Drug Deliv Sci Technol. 2015;28:18–27.

    CAS  Google Scholar 

  12. Kuentz M. Lipid-based formulations for oral delivery of lipophilic drugs. Drug Discov Today Technol. 2012;9.

    CAS  Google Scholar 

  13. Hassan TH, Metz H, Mäder K. Novel semisolid SNEDDS based on PEG-30-dipolyhydroxystearate: development and characterization. Int J Pharm. 2014;477:506–18.

    CAS  PubMed  Google Scholar 

  14. Woo JS, Song YK, Hong JY, Lim SJ, Kim CK. Reduced food-effect and enhanced bioavailability of a self-microemulsifying formulation of itraconazole in healthy volunteers. Eur J Pharm Sci. 2008;33:159–65.

    CAS  PubMed  Google Scholar 

  15. Balakrishnan P, Lee BJ, Oh DH, Kim JO, Hong MJ, Jee JP, et al. Enhanced oral bioavailability of dexibuprofen by a novel solid self-emulsifying drug delivery system (SEDDS). Eur J Pharm Biopharm. 2009;72:539–45.

    CAS  PubMed  Google Scholar 

  16. Vohra AM, Patel CV, Kumar P, Thakkar HP. Development of dual drug loaded solid self microemulsifying drug delivery system: exploring interfacial interactions using QbD coupled risk based approach. J Mol Liq. 2017;242:1156–68.

    CAS  Google Scholar 

  17. Inugala S, Eedara BB, Sunkavalli S, Dhurke R, Kandadi P, Jukanti R, et al. Solid self-nanoemulsifying drug delivery system (S-SNEDDS) of darunavir for improved dissolution and oral bioavailability: in vitro and in vivo evaluation. Eur J Pharm Sci. 2015;74:1–10.

    CAS  PubMed  Google Scholar 

  18. Abbaspour M, Jalayer N, Makhmalzadeh BS. Development and evaluation of a solid self-nanoemulsifying drug delivery system for loratadin by extrusion-spheronization. Adv Pharm Bull. 2014;4:113–9.

    PubMed  Google Scholar 

  19. Zeng L, Zhang Y. Development, optimization and in vitro evaluation of norcantharidin loadedself-nanoemulsifying drug delivery systems (NCTD-SNEDDS). Pharm Dev Technol. 2017;22:399–408.

    CAS  PubMed  Google Scholar 

  20. Park JH, Kim DS, Mustapha O, Yousaf AM, Kim JS, Kim DW, et al. Comparison of a revaprazan-loaded solid dispersion, solid SNEDDS and inclusion compound: physicochemical characterisation and pharmacokinetics. Colloids Surfaces B Biointerfaces [Internet. 2018 [cited 2019 Jun 25;162:420–6 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927776517308573. Accessed 20 Jul 2019.

    CAS  PubMed  Google Scholar 

  21. Elkasabgy NA. Ocular supersaturated self-nanoemulsifying drug delivery systems (S-SNEDDS) to enhance econazole nitrate bioavailability. Int J Pharm [Internet]. 2014 [cited 2019 Jun 25];460:33–44. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517313009393. Accessed 20 Jul 2019.

    CAS  PubMed  Google Scholar 

  22. Craig DQM, Lievens HSR, Pitt KG, Storey DE. An investigation into the physico-chemical properties of self-emulsifying systems using low frequency dielectric spectroscopy, surface tension measurements and particle size analysis. Int J Pharm. 1993;96:147–55.

    CAS  Google Scholar 

  23. Nazzal S, Khan MA. Response surface methodology for the optimization of ubiquinone self-nanoemulsified drug delivery system. AAPS PharmSciTech. 2004;3:23–31.

    Google Scholar 

  24. Chavda H, Patel J, Chavada G, Dave S, Patel A, Patel C. Self-nanoemulsifying powder of isotretinoin: preparation and characterization. J Powder Technol [Internet]. 2013 [cited 2019 Jan 26];2013:1–9. Available from: https://www.hindawi.com/journals/jpt/2013/108569/abs/

    Google Scholar 

  25. Sunkavalli S, Eedara BB, Janga KY, Velpula A, Jukanti R, Bandari S. Preparation and characterization of docetaxel self-nanoemulsifying powders (SNEPs): a strategy for improved oral delivery. Korean J Chem Eng [Internet]. 2016 [cited 2019 Jan 26];33:1115–24. Available from: https://doi.org/10.1007/s11814-015-0205-9

    CAS  Google Scholar 

  26. Mohamed DA, Al-okbi SY. Evaluation of anti-gout activity of some plant food extracts. Pol J Food Nutr Sci [Internet]. 2008 [cited 2019 Jan 26];58:389–95. Available from: http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-32e1e33d-8431-4edd-a82c-92fe8c8d814c. Accessed 20 Jul 2019.

  27. Miao Y, Chen G, Ren L, Pingkai O. Characterization and evaluation of self-nanoemulsifying sustained-release pellet formulation of ziprasidone with enhanced bioavailability and no food effect. Drug Deliv. 2016;23:2163–72.

    CAS  PubMed  Google Scholar 

  28. Patel J, Patel A, Raval M, Sheth N. Formulation and development of a self-nanoemulsifying drug delivery system of irbesartan. J Adv Pharm Technol Res. 2013;2:9.

    Google Scholar 

  29. Pund S, Shete Y, Jagadale S. Multivariate analysis of physicochemical characteristics of lipid based nanoemulsifying cilostazol—quality by design. Colloids Surfaces B Biointerfaces. 2014;115:29–36.

    CAS  PubMed  Google Scholar 

  30. Rahman MA, Iqbal Z, Hussain A. Formulation optimization and in vitro characterization of sertraline loaded self-nanoemulsifying drug delivery system (SNEDDS) for oral administration. J Pharm Investig. 2012;42:191–202.

    CAS  Google Scholar 

  31. Kallakunta VR, Bandari S, Jukanti R, Veerareddy PR. Oral self emulsifying powder of lercanidipine hydrochloride: formulation and evaluation. Powder Technol. 2012;221:375–82.

    CAS  Google Scholar 

  32. Elkordy AA, Essa EA, Dhuppad S, Jammigumpula P. Liquisolid technique to enhance and to sustain griseofulvin dissolution: effect of choice of non-volatile liquid vehicles. Int J Pharm. 2012;434:122–32.

    CAS  PubMed  Google Scholar 

  33. Gera S, Talluri S, Rangaraj N, Sampathi S. Formulation and evaluation of naringenin nanosuspensions for bioavailability enhancement. AAPS PharmSciTech. 2017;18:3151–62.

    CAS  Google Scholar 

  34. Patel P, Pailla SR, Rangaraj N, Cheruvu HS, Dodoala S, Sampathi S. Quality by design approach for developing lipid-based nanoformulations of gliclazide to improve oral bioavailability and anti-diabetic activity. AAPS PharmSciTech [Internet]. 2019 [cited 2019 Jan 26];20:45. Available from: https://doi.org/10.1208/s12249-018-1214-x

  35. Sarvaiya VN, Sadariya KA, Pancha PG, Thaker AM, Patel AC, Prajapati AS. Evaluation of antigout activity of Phyllanthus emblica fruit extracts on potassium oxonate-induced gout rat model. Vet World. 2015;8:1230–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Taha EI, Al-Saidan S, Samy AM, Khan MA. Preparation and in vitro characterization of self-nanoemulsified drug delivery system (SNEDDS) of all-trans-retinol acetate. Int J Pharm. 2004;285:109–19.

    CAS  PubMed  Google Scholar 

  37. Singh AK, Chaurasiya A, Awasthi A, Mishra G, Asati D, Khar RK, et al. Oral bioavailability enhancement of exemestane from self-microemulsifying drug delivery system (SMEDDS). AAPS PharmSciTech. 2009;10:906–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Adel S, Elkasabgy NA. Design of innovated lipid-based floating beads loaded with an antispasmodic drug: in-vitro and in-vivo evaluation. J Liposome Res [Internet]. 2014 [cited 2019 Jun 25];24:136–49. Available from: https://doi.org/10.3109/08982104.2013.857355

    PubMed  Google Scholar 

  39. Basalious EB, Shawky N, Badr-Eldin SM. SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: development and optimization. Int J Pharm. 2010;391:203–11.

    CAS  PubMed  Google Scholar 

  40. Constantinides PP, Scalart JP, Lancaster C, Marcello J, Marks G, Ellens H, et al. Formulation and intestinal absorption enhancement evaluation of water-in-oil microemulsions incorporating medium-chain glycerides. Pharm Res An Off J Am Assoc Pharm Sci. 1994;11:1385–90.

    CAS  Google Scholar 

  41. Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6:231–48.

    CAS  PubMed  Google Scholar 

  42. Nielsen FS, Petersen KB, Müllertz A. Bioavailability of probucol from lipid and surfactant based formulations in minipigs: influence of droplet size and dietary state. Eur J Pharm Biopharm. 2008;69:553–62.

    CAS  PubMed  Google Scholar 

  43. Weerapol Y, Limmatvapirat S, Nunthanid J, Sriamornsak P. Self-nanoemulsifying drug delivery system of nifedipine: impact of hydrophilic-lipophilic balance and molecular structure of mixed surfactants. AAPS PharmSciTech [Internet]. 2014;15:456–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24452500%0A http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3969497. Accessed 20 Jul 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gupta S, Chavhan S, Sawant KK. Self-nanoemulsifying drug delivery system for adefovir dipivoxil: design, characterization, in vitro and ex vivo evaluation. Colloids Surfaces A Physicochem Eng Asp. 2011;392:145–55.

    CAS  Google Scholar 

  45. Zhao Y, Wang C, Chow AHL, Ren K, Gong T, Zhang Z, et al. Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of zedoary essential oil: formulation and bioavailability studies. Int J Pharm. 2010;383:170–7.

    CAS  PubMed  Google Scholar 

  46. Newton M, Petersson J, Podczeck F, Clarke A, Booth S. The influence of formulation variables on the properties of pellets containing a self-emulsifying mixture. J Pharm Sci. 2001;90:987–95.

    CAS  PubMed  Google Scholar 

  47. Mohd AB, Sanka K, Bandi S, Diwan PV, Shastri N. Solid self-nanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of glimepiride: development and antidiabetic activity in albino rabbits. Drug Deliv. 2015;22:499–508.

    CAS  PubMed  Google Scholar 

  48. Payghan SA. Potential investigation of Peceol for formulation of ezetimibe self nano emulsifying. Allied Acad. 2016:21–32.

  49. Janga KY, Jukanti R, Sunkavalli S, Velpula A, Bandari S, Kandadi P, et al. In situ absorption and relative bioavailability studies of zaleplon loaded self-nanoemulsifying powders. J Microencapsul. 2013;30:161–72.

    CAS  PubMed  Google Scholar 

  50. Gershanik T, Benita S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm. 2000;50:179–88.

    CAS  PubMed  Google Scholar 

  51. Venkata Ramana Rao S, Shao J. Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs. I. Formulation development. Int J Pharm. 2008;362:2–9.

    Google Scholar 

  52. Singh B, Bandopadhyay S, … RK-CR in, 2009 26(5); 427–521. Self-emulsifying drug delivery systems (SEDDS): formulation development, characterization, and applications. dl.begellhouse.com [Internet]. [cited 2019 Jan 26]; Available from: http://www.dl.begellhouse.com/journals/3667c4ae6e8fd136,7bc13fbe52b73e32,3ecc45285b4b6014.html. Accessed 20 Jul 2019.

  53. Thanki K, Gangwal RP, Sangamwar AT, Jain S. Oral delivery of anticancer drugs: challenges and opportunities. J Control Release. 2013;170:15–40.

    CAS  PubMed  Google Scholar 

  54. Fernandez S, Jannin V, Chevrier S, Chavant Y, Demarne F, Carrière F. In vitro digestion of the self-emulsifying lipid excipient Labrasol® by gastrointestinal lipases and influence of its colloidal structure on lipolysis rate. Pharm Res. 2013;30:3077–87.

    CAS  PubMed  Google Scholar 

  55. Zhao X, Zhu JX, Mo SF, Pan Y, Kong LD. Effects of cassia oil on serum and hepatic uric acid levels in oxonate-induced mice and xanthine dehydrogenase and xanthine oxidase activities in mouse liver. J Ethnopharmacol. 2006;103:357–65.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to NIPER Hyderabad for the support towards infrastructure and state-of-the art facilities for conducting research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunitha Sampathi.

Ethics declarations

Conflict of Interest

The authors disclosed absence of any conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangaraj, N., Shah, S., A J, M. et al. Quality by Design Approach for the Development of Self-Emulsifying Systems for Oral Delivery of Febuxostat: Pharmacokinetic and Pharmacodynamic Evaluation. AAPS PharmSciTech 20, 267 (2019). https://doi.org/10.1208/s12249-019-1476-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1476-y

Keywords

Navigation