An in vitro Assessment of Thermo-Reversible Gel Formulation Containing Sunitinib Nanoparticles for Neovascular Age-Related Macular Degeneration

Abstract

Anti-vascular endothelial growth factor agents have been widely used to treat several eye diseases including age-related macular degeneration (AMD). An approach to maximize the local concentration of drug at the target site and minimize systemic exposure is to be sought. Sunitinib malate, a multiple receptor tyrosine kinase inhibitor was encapsulated in poly(lactic-co-glycolic acid) nanoparticles to impart sustained release. The residence time in vitreal fluid was further increased by incorporating nanoparticles in thermo-reversible gel. Nanoparticles were characterized using TEM, DSC, FTIR, and in vitro drug release profile. The cytotoxicity of the formulation was assessed on ARPE-19 cells using the MTT assay. The cellular uptake, wound scratch assay, and VEGF expression levels were determined in in vitro settings. The optimized formulation had a particle size of 164.5 nm and zeta potential of − 18.27 mV. The entrapment efficiency of 72.0% ± 3.5% and percent drug loading of 9.1 ± 0.7% were achieved. The viability of ARPE-19 cells was greater than 90% for gel loaded, as such and blank nanoparticles at 10 μM and 20 μM concentration tested, whereas for drug solution viability was found to be 83% and 71% respectively at above concentration. The cell viability results suggest the compatibility of the developed formulation. Evaluation of cellular uptake, wound scratch assay, and VEGF expression levels for the developed formulations indicated that the formulation had higher uptake, superior anti-angiogenic potential, and prolonged inhibition of VEGF activity compared with drug solution. The results showed successful development of sunitinib-loaded nanoparticle-based thermo-reversible gel which may be used for the treatment of neovascular AMD.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Pennington KL, DeAngelis MM. Epidemiology of age-related macular degeneration (AMD): associations with cardiovascular disease phenotypes and lipid factors. Eye Vision. 2016;3(1):34.

    PubMed  Article  Google Scholar 

  2. 2.

    Shang Q, Zhai J, Tian R, Zheng T, Zhang X, Liang X, et al. Fabrication, characterization, and controlled release of eprinomectin from injectable mesoporous PLGA microspheres. RSC Adv. 2015;5(92):75025–32.

    CAS  Article  Google Scholar 

  3. 3.

    Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49(8):1993–2007.

    CAS  Article  Google Scholar 

  4. 4.

    Chou R, Dana T, Bougatsos C, Grusing S, Blazina I. Screening for impaired visual acuity in older adults: updated evidence report and systematic review for the US Preventive Services Task Force. Jama. 2016;315(9):915–33.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Nowak JZ. Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol Rep. 2006;58(3):353.

    CAS  PubMed  Google Scholar 

  6. 6.

    Al Gwairi O, Thach L, Zheng W, Osman N, Little PJ Cellular and molecular pathology of age-related macular degeneration: potential role for proteoglycans. J Ophthalmol 2016;2016, 1–7. https://doi.org/10.1155/2016/2913612

    Article  CAS  Google Scholar 

  7. 7.

    Jager RD, Mieler WF, Miller JW. Age-related macular degeneration. N Engl J Med. 2008;358(24):2606–17.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29(2):144–68.

    Article  PubMed  Google Scholar 

  9. 9.

    Pożarowska D, Pożarowski P. The era of anti-vascular endothelial growth factor (VEGF) drugs in ophthalmology, VEGF and anti-VEGF therapy. Cent Eur J Immunol. 2016;41(3):311.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Treatment of Diabetic Macular Edema (DME) With Anti-VEGF and Focal Laser. Available from: https://ClinicalTrials.gov/show/NCT03590444. Accessed 23 May 2018.

  11. 11.

    Multicenter Clinical Study of Anti-VEGF Treatment on High Risk Diabetic Retinopathy (DR). Available from: https://ClinicalTrials.gov/show/NCT03452657. Accessed 23 May 2018.

  12. 12.

    Maguire MG, Martin DF, Ying G-S, Jaffe GJ, Daniel E, Grunwald JE, et al. Five-year outcomes with anti–vascular endothelial growth factor treatment of neovascular age-related macular degeneration: The Comparison of age-related macular degeneration treatments trials. Ophthalmology. 2016;123(8):1751–61.

    PubMed  Article  Google Scholar 

  13. 13.

    Pieramici DJ, Lu N, Stoilov IJIO, Science V. Diabetic retinopathy outcomes with anti-VEGF treatments: clinical experience in randomized clinical trials. 2015;56(7):1775.

  14. 14.

    Schwartz SG, Scott IU, Flynn HW Jr, Stewart MW. Drug delivery techniques for treating age-related macular degeneration. Expert Opin Drug Deliv. 2014;11(1):61–8.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Del Amo EM, Rimpelä A-K, Heikkinen E, Kari OK, Ramsay E, Lajunen T, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 2017;57:134–85.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Al-Zamil WM, Yassin SA. Recent developments in age-related macular degeneration: a review. Clin Interv Aging. 2017;12:1313–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Le Tourneau C, Raymond E, Faivre S. Sunitinib: a novel tyrosine kinase inhibitor. A brief review of its therapeutic potential in the treatment of renal carcinoma and gastrointestinal stromal tumors (GIST). Ther Clin Risk Manag. 2007;3(2):341.

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Mena AC, Pulido EG, Guillen-Ponce C. Understanding the molecular-based mechanism of action of the tyrosine kinase inhibitor: sunitinib. Anti-Cancer Drugs. 2010;21:S3–S11.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–97.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Semete B, Booysen L, Lemmer Y, Kalombo L, Katata L, Verschoor J, et al. In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomed Nanotechnol Biol Med. 2010;6(5):662–71.

    CAS  Article  Google Scholar 

  21. 21.

    Patel J, Amrutiya J, Bhatt P, Javia A, Jain M, Misra A. Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. J Microencapsul. 2018;35(2):204–17.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Bhatt P, Lalani R, Vhora I, Patil S, Amrutiya J, Misra A, et al. Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: enhanced loading efficiency and its pharmacokinetic evaluation. Int J Pharm. 2018;536(1):95–107.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Yewale C, Baradia D, Patil S, Bhatt P, Amrutiya J, Gandhi R, et al. Docetaxel loaded immunonanoparticles delivery in EGFR overexpressed breast carcinoma cells. J Drug Delivery Sci Technol. 2018;45:334–45.

    CAS  Article  Google Scholar 

  24. 24.

    Patil S, Bhatt P, Lalani R, Amrutiya J, Vhora I, Kolte A, et al. Low molecular weight chitosan–protamine conjugate for siRNA delivery with enhanced stability and transfection efficiency. RSC Adv. 2016;6(112):110951–63.

    CAS  Article  Google Scholar 

  25. 25.

    Hirani A, Grover A, Lee YW, Pathak Y, Sutariya V. Triamcinolone acetonide nanoparticles incorporated in thermoreversible gels for age-related macular degeneration. Pharm Dev Technol. 2016;21(1):61–7.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Zhang C, Qineng P, Zhang H. Self-assembly and characterization of paclitaxel-loaded N-octyl-O-sulfate chitosan micellar system. Colloids Surf B: Biointerfaces. 2004;39(1–2):69–75.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Bhatt P, Khatri N, Kumar M, Baradia D, Misra A. Microbeads mediated oral plasmid DNA delivery using polymethacrylate vectors: an effectual groundwork for colorectal cancer. Drug Deliv. 2015;22(6):849–61.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Bhatt P, Lalani R, Mashru R, Misra A. Abstract 2065: Anti-FSHR antibody Fab’ fragment conjugated immunoliposomes loaded with cyclodextrin-paclitaxel complex for improved <em>in vitro</em> efficacy on ovarian cancer cells. Cancer Research. 2016;76(14 Supplement):2065.

    Google Scholar 

  29. 29.

    Espana-Serrano L, Chougule MB. Enhanced anticancer activity of PF-04691502, a dual PI3K/mTOR inhibitor, in combination with VEGF siRNA against non-small-cell lung cancer. Mol Ther Nucleic Acids. 2016;5(11):e384.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Goel PN, Gude RP. Unravelling the antimetastatic potential of pentoxifylline, a methylxanthine derivative in human MDA-MB-231 breast cancer cells. Mol Cell Biochem. 2011;358(1–2):141–51.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Kim KL, Suh W. Apatinib, an inhibitor of vascular endothelial growth factor receptor 2, suppresses pathologic ocular neovascularization in mice. Invest Ophthalmol Vis Sci. 2017;58(9):3592–9.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Kathleen H, Shannon JK, Iqbal MT, Yashwant P, Vijaykumar S. Utilization of apatinib-loaded nanoparticles for the treatment of ocular neovascularization. Curr Drug Deliv. 2019;16(2):153–63.

    Google Scholar 

  33. 33.

    Pirooznia N, Hasannia S, Lotfi AS, Ghanei M. Encapsulation of alpha-1 antitrypsin in PLGA nanoparticles: in vitro characterization as an effective aerosol formulation in pulmonary diseases. J Nanobiotechnol. 2012;10:20.

    CAS  Article  Google Scholar 

  34. 34.

    Singh R, Kesharwani P, Mehra NK, Singh S, Banerjee S, Jain NK. Development and characterization of folate anchored Saquinavir entrapped PLGA nanoparticles for anti-tumor activity. Drug Dev Ind Pharm. 2015;41(11):1888–901.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Kovach JL, Schwartz SG, Flynn HW, Scott IU. Anti-VEGF treatment strategies for wet AMD. J Ophthalmol. 2012;2012:786870.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Saint-Geniez M, Maharaj AS, Walshe TE, Tucker BA, Sekiyama E, Kurihara T, et al. Endogenous VEGF is required for visual function: evidence for a survival role on Müller cells and photoreceptors. PLoS One. 2008;3(11):e3554.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. 37.

    Day S, Acquah K, Mruthyunjaya P, Grossman DS, Lee PP, Sloan FA. Ocular complications after anti–vascular endothelial growth factor therapy in medicare patients with age-related macular degeneration. Am J Ophthalmol. 2011;152(2):266–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Michels S, Rosenfeld PJ, Puliafito CA, Marcus EN, Venkatraman ASJO. Systemic bevacizumab (Avastin) therapy for neovascular age-related macular degeneration: twelve-week results of an uncontrolled open-label clinical study. Ophthalmology. 2005;112(6):1035–47. e9.

    PubMed  Article  Google Scholar 

  39. 39.

    Sharma S, Johnson D, Abouammoh M, Hollands S, Brissette A. Rate of serious adverse effects in a series of bevacizumab and ranibizumab injections. Can J Ophthalmol. 2012;47(3):275–9.

    PubMed  Article  Google Scholar 

  40. 40.

    Medina C, Santos-Martinez M, Radomski A, Corrigan O, Radomski MJB. Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol. 2007;150(5):552–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26(5):1197.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Stevenson CL, Santini JT Jr, Langer R. Reservoir-based drug delivery systems utilizing microtechnology. Adv Drug Deliv Rev. 2012;64(14):1590–602.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Alshetaili AS, Anwer MK, Alshahrani SM, Alalaiwe A, Alsulays BB, Ansari MJ, et al. Characteristics and anticancer properties of sunitinib malate-loaded poly-lactic-co-glycolic acid nanoparticles against human colon cancer HT-29 cells lines. Tropical Journal of Pharmaceutical Research. 2018;17(7):1263−9.

    CAS  Article  Google Scholar 

  44. 44.

    Sadat SM, Jahan ST, Haddadi AJ. Effects of size and surface charge of polymeric nanoparticles on in vitro and in vivo applications. Nanobiotechnology. 2016;7(02):91.

    CAS  Google Scholar 

  45. 45.

    Tandel H, Bhatt P, Jain K, Shahiwala A, Misra A. Chapter-1: In-vitro and in-vivo tools in emerging drug delivery scenario: Challenges and Updates. In-vitro and In-vivo tools in drug delivery research for optimum clinical outcomes; 2018; 1st edition; Editors: Misra A and Shahiwala A. CRC press, Boca Raton. 8–1. https://doi.org/10.1201/b2244.

  46. 46.

    Huo M, Zhao Y, Satterlee AB, Wang Y, Xu Y, Huang LJ. Tumor-targeted delivery of sunitinib base enhances vaccine therapy for advanced melanoma by remodeling the tumor microenvironment. J Control Release. 2017;245:81–94.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Ambasta RK, Sharma A, Kumar PJ. Nanoparticle mediated targeting of VEGFR and cancer stem cells for cancer therapy. Vasc Cell. 2011;3(1):26.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Senger DR, Davis GE. Cold Spring Harbor perspectives in biology. Angiogenesis. n.d.;3(8):a005090-a.

  49. 49.

    Hulkower KI, Herber RL. Cell migration and invasion assays as tools for drug discovery. Pharmaceutics. 2011;3(1):107–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Carmeliet PJO. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69(Suppl. 3):4–10.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, USA, for providing start-up support to Dr. Chougule’s lab. The authors would also like to acknowledge the Lisa Muma Weitz Laboratory for Advanced Microscopy and Cell Imaging, USF Health, University of South Florida, Tampa, FL, USA, for providing facility for microscopy and imaging and Department of Chemistry, College of Arts and Science, University of South Florida, Tampa, FL, USA, for providing facility for DSC study.

Funding

The authors would like to thank High Tech Corridor Matching Grant Program (FHT 17-20) with Param Bhakti Healthcare and Research for providing necessary funding for this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vijaykumar Sutariya.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest Editors: Mahavir Bhupal Chougule, Vijaykumar B. Sutariya and Sudip K. Das

Electronic Supplementary Material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhatt, P., Narvekar, P., Lalani, R. et al. An in vitro Assessment of Thermo-Reversible Gel Formulation Containing Sunitinib Nanoparticles for Neovascular Age-Related Macular Degeneration. AAPS PharmSciTech 20, 281 (2019). https://doi.org/10.1208/s12249-019-1474-0

Download citation

KEY WORDS

  • sunitinib
  • PLGA nanoparticles
  • sustained release
  • ocular delivery
  • intravitreal
  • VEGF