Skip to main content

Advertisement

Log in

Dentifrice Based on Fluoride–Hydrotalcite Compounds: Characterization and Release Capacity Evaluation by Novel In Vitro Methods

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Anti-caries activity of fluoride ions is due to the protection against demineralization and the enhancement of remineralization of tooth enamel. Dentifrices available on the market contain sodium fluoride, sodium monofluorophosphate, stannous fluoride, and amine fluoride as source of these ions. A new compound working both as fluoride ion source and as abrasive was projected. Hybrids based on F ions intercalated between the lamellae of hydrotalcite-like compounds (HTlc-F), namely MgAl-HTlc-F and ZnAl-HTlc-F, were prepared and characterized. Then, three different percentages (2, 3, and 4%) of both HTlc-F compounds were assayed. After the rheological characterization, the dentifrices containing 3 and 4% of MgAl-HTlc-F and ZnAl-HTlc-F, respectively, resulted to be the most suitable ones. Two novel in vitro methods, “rotary toothbrush method” and “manual brushing method,” were developed and used in order to study the F ions release from the prepared dentifrices. The obtained results showed that the dentifrice containing ZnAl-HTlc-F (4%) was the most effective in releasing fluoride ions. The “rotary toothbrush method” resulted to be the most suitable as the simulation of the brushing movements is standardizable and reproducible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Horst JA, Tanzer JM, Milgrom PM. Fluorides and other preventive strategies for tooth decay. Dent Clin N Am. 2018;62:207–34.

    Article  Google Scholar 

  2. Walsh T, Worthington HV, Glenny AM, Appelbe P. Marinho VCC, Shi X. Fluoride toothpastes of different concentrations for preventing dental caries in children and adolescents (review). Cochrane Database Syst Rev, 2010; 1: Art. No.: CD007868. DOI: https://doi.org/10.1002/14651858.CD007868.pub2.

  3. Lippert F. Introduction to toothpaste—its purpose, history and ingredients. In: van Loveren CA, editor. Toothpastes. Monogr Oral Sci. Basel. Amsterdam: Karger; 2013. p. 1–14.

    Google Scholar 

  4. Margolis HC, Moreno EC. Physicochemical perspectives on the cariostatic mechanisms of systemic and topical fluorides. J Dent Res. 1990;69(Spec Iss):606–13.

    Article  CAS  Google Scholar 

  5. Trifirò F, Vaccari A. In: M. Alberti, T. Bein, (Eds). Solid state supramolecular chemistry: two- and three-dimensional inorganic networks comprehensive supramolecular chemistry, Pergamon-Elsevier: Oxford, 7 (8) 1996, pp. 1–46.

    Google Scholar 

  6. Miyata S. Anion exchange properties of hydrotalcite-like compounds. Clay Clay Miner. 1983;31(4):305–11.

    Article  CAS  Google Scholar 

  7. Ulibarri MA, Pavlovic I, Barriga C, Hermosı́n MC, Cornejo J. Adsorption of anionic species on hydrotalcite-like compounds: effect of interlayer anion and crystallinity. Appl Clay Sci. 2001;18:17–27.

    Article  CAS  Google Scholar 

  8. Costantino U, Ambrogi V, Nocchetti M, Perioli L. Hydrotalcite-like compounds: versatile layered hosts of molecular anions with biological activity. Micropor Mesopor Mater. 2008;107:149–60.

    Article  CAS  Google Scholar 

  9. Perioli L, Nocchetti M, Giannelli P, Pagano C, Bastianini M. Hydrotalcite composites for an effective fluoride buccal administration: a new technological approach. Int J Pharm. 2013;454:259–68.

    Article  CAS  Google Scholar 

  10. Sanderson BA, Sowersby DS, Crosby S, Goss M, Lewis LK, Beall GW. Charge density and particle size effects on oligonucleotide and plasmid DNA binding to nanosized hydrotalcite. Biointerphases. 2013;8:8.

    Article  Google Scholar 

  11. Pagano C, Perioli L, Blasi F, Bastianini M, Chiesi C, Cossignani L. Optimization of wine phenol extraction by layered double hydroxides and technological evaluation of the bioactive rich compound. Int J Food Sci Technol IJFST. 2017;52(12):2582–8.

    Article  CAS  Google Scholar 

  12. Perioli L, Ambrogi V, Nocchetti M, Sisani M, Pagano C. Preformulation studies on host-guest composites for oral administration of BCS class IV drugs: HTlc and furosemide. Appl Clay Sci. 2011;53:696–703.

    Article  CAS  Google Scholar 

  13. Sani T, Adem M, Fetter G, Bosch P, Diaz I. Defluoridation performance comparison of nano-hydrotalcite/hydroxyapatite composite with calcined hydrotalcite and hydroxyapatite. Water Air Soil Pollution. 2016;227:90.

    Article  Google Scholar 

  14. Duceac LD, Dobre CE, Pavaleanu I, Calin G, Nichitus S, Damir D. Diseases prevention by water defluoridation using hydrotalcites as decontaminant materials. Rev Chim. 2017;68:168–71.

    Article  CAS  Google Scholar 

  15. Cao Y, Guo Q, Zhuang Y, Yu Z, Guo W, Zhang C, et al. Removal of harmful constituents from geothermal water by selected anion clays. Proc Earth Planet Sci. 2017;17:161–4.

    Article  Google Scholar 

  16. Perioli L, Pagano C, Nocchetti M, Latterini L. Development of smart semisolid formulations to enhance retinoic acid topical application. J Pharm Sci. 2015;104:3904–12.

    Article  CAS  Google Scholar 

  17. Arrigo R, Ronchetti S, Montanaro L, Malucelli G. Effects of the nanofiller size and aspect ratio on the thermal and rheological behavior of PEG nanocomposites containing boehmites or hydrotalcites. J Therm Anal Calorim. 2018;134(3):1667–80.

    Article  CAS  Google Scholar 

  18. Yokogawa Y, Kakehashi K, Wakabayashi H, Oike K, Morita Y, Fujii K, et al. VSC adsorptive property of zinc or iron oxide in comparison with that of layered double hydroxide containing zinc of iron. Key Eng Mater. 2018;782:250–5.

    Article  Google Scholar 

  19. Yokogawa Y, Sano H, Namba S, Fujii K, Morita Y, Hotta M, et al. VSC adsorption capability of layered double hydroxide containing transition metal. J Biomim Biomat Biomed Eng. 2014;21:71–4.

    CAS  Google Scholar 

  20. Yokogawa Y, Namba S, Kinoshita J, Morita Y, Fujii K, Hotta M, et al. VSC sorption onto Mg-Fe-F layered double hydroxide and its fluoride release in aqueous solution. Key Eng Mater. 2016;720:37–40.

    Article  Google Scholar 

  21. Costantino U, Marmottini F, Nocchetti M, Vivani R. New synthetic routes to hydrotalcite-like compounds—characterisation and properties of the obtained materials. Eur J Inorg Chem. 1998;1998(10):1439–46.

    Article  Google Scholar 

  22. Bish DL. Anion exchange in takovite: applications to other hydroxide minerals. Bull Mineral. 1980;103:170–5.

    CAS  Google Scholar 

  23. Reichle WT. Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics. 1986;22:135–41.

    Article  CAS  Google Scholar 

  24. Dionex, Determination of anions in acid rain, Application note 31, 1992.

  25. Pauling L. The sizes of ions and the structure of ionic crystals. J Am Chem Soc. 1927;49:765–90.

    Article  CAS  Google Scholar 

  26. Tyle P. Effect of size, shape and hardness of particles in suspension on oral texture and palatability. Acta Psychol. 1993;84(1):111–8.

    Article  CAS  Google Scholar 

  27. Wülknitz P. Cleaning power and abrasivity of European toothpastes. Adv Dent Res. 1997;11(4):576–9.

    Article  Google Scholar 

  28. Lippert F, Arrageg MA, Eckert GJ, Hara AT. Interaction between toothpaste abrasivity and toothbrush filament stiffness on the development of erosive/abrasive lesions in vitro. Int Dental J. 2017;67:344–50.

    Article  Google Scholar 

  29. Camargo IM, Saiki M, Vasconcellos MB, Avila DM. Abrasiveness evaluation of silica and calcium carbonate used in the production of dentifrices. J Cosmet Sci. 2001;52(3):163–7.

    CAS  PubMed  Google Scholar 

  30. Li Y, Hou WG, Shen SL. Rheological behaviour of aqueous suspension containing cationic starch and aluminum magnesium hydrotalcite-like compound in the presence of different electrolytes. Coll Surf A Physicochem Eng Aspects. 2009;350(1–3):109–13.

    Article  CAS  Google Scholar 

  31. Ritger P, Peppas NA. A simple equation for description of solute release. II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42.

    Article  CAS  Google Scholar 

  32. Bhaskar R, Murthy RSR, Miglani BD, Viswanathan K. Novel method to evaluate diffusion controlled release of drug from resinate. Int J Pharm. 1986;28:59–66.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Mr. Marco Marani for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luana Perioli.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

Figure 1SI. Thermogravimetric curves obtained from A) MgAl-HTlc-F and B) ZnAl-HTlc-F (PNG 561 kb)

High resolution image (TIF 19764 kb)

ESM 2

Figure 2SI. XRPD patterns of dentifrices F (containing ZnAl-HTlc-F 4%, red line) and H (containing MgAl-HTlc-F 3% blue line) (PNG 87 kb)

High resolution image (TIF 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagano, C., Perioli, L., Marmottini, F. et al. Dentifrice Based on Fluoride–Hydrotalcite Compounds: Characterization and Release Capacity Evaluation by Novel In Vitro Methods. AAPS PharmSciTech 20, 248 (2019). https://doi.org/10.1208/s12249-019-1459-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1459-z

KEY WORDS

Navigation