Skip to main content
Log in

Crystal Transformation of β-CD-MOF Facilitates Loading of Dimercaptosuccinic Acid

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The β-cyclodextrin-metal-organic framework (β-CD-MOF), a potential drug delivery carrier, presents a densely packed laminated crystal structure (CCDC number 1041782) that prevents drug from entering inside the molecular voids in most CD units. In this paper, it was demonstrated that dimercaptosuccinic acid (DMSA), an instable small molecule chemical drug, was successfully loaded in β-CD-MOF with a high molar ratio of 1:1.35 (β-CD-MOF:DMSA) determined by high-performance liquid chromatography. The drug loading mechanism of β-CD-MOF/DMSA was supported by a series of experimental characterizations and molecular simulations. The morphology observations revealed that crystalline particles of β-CD-MOF transformed to reticular microstructure after drug loading evidenced by powder X-ray diffraction (PXRD), scanning electron microscope (SEM), synchrotron radiation Fourier transform infrared spectroscopy (SR-FTIR), and etc. It is of interest to note that the stability of DMSA was well improved by β-CD-MOF, but decreased by γ-CD-MOF, indicating different protective capacities between the two types of CD-MOFs. Thus, it is hypothesized that the transformation from laminated molecular arrangement of β-CD-MOF to reticular microstructure leads to an enhanced drug-loading capability for delivery of specific drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341(6149):1230444.

    Article  Google Scholar 

  2. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal-organic framework materials as catalysts. Chem Soc Rev. 2009;38(5):1450–9.

    Article  CAS  Google Scholar 

  3. Li JR, Kuppler RJ, Zhou HC. Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev. 2009;38(5):1477–504.

    Article  CAS  Google Scholar 

  4. Murray LJ, Dinca M, Long JR. Hydrogen storage in metal-organic frameworks. Chem Soc Rev. 2009;38(5):1294–314.

    Article  CAS  Google Scholar 

  5. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. Metal-organic framework materials as chemical sensors. Chem Rev. 2012;112(2):1105–25.

    Article  CAS  Google Scholar 

  6. Prochowicz D, Kornowicz A, Justyniak I, Lewinski J. Metal complexes based on native cyclodextrins: synthesis and structural diversity. Coordin Chem Rev. 2016;306:331–45.

    Article  CAS  Google Scholar 

  7. Kathuria A, Al-Ghamdi S, Abiad MG, Auras R. Multifunctional ordered bio-based mesoporous framework from edible compounds. J Biobased Mater Bio. 2018;12(5):449–54.

    Article  CAS  Google Scholar 

  8. Li J, Loh XJ. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv Drug Deliv Rev. 2008;60(9):1000–17.

    Article  CAS  Google Scholar 

  9. Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004;3(12):1023–35.

    Article  CAS  Google Scholar 

  10. Xu J, Wu L, Guo T, Zhang GQ, Wang CF, Li H, et al. A "ship-in-a-bottle" strategy to create folic acid nanoclusters inside the nanocages of gamma-cyclodextrin metal-organic frameworks. Int J Pharm. 2018;556:89–96.

    Article  Google Scholar 

  11. Liao WM, Shi HT, Shi XH, Yin YG. Pyrolytic cavitation, selective adsorption and molecular recognition of a porous Eu(III) MOF. Dalton Trans. 2014;43(41):15305–7.

    Article  CAS  Google Scholar 

  12. Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat Mater. 2015;14(1):48–55.

    Article  CAS  Google Scholar 

  13. Chen L, Zhu DD, Ji GJ, Yuan S, Qian JF, He MY, et al. Efficient adsorption separation of xylene isomers using a facilely fabricated cyclodextrin-based metal-organic framework. J Chem Technol Biotechnol. 2018;93(10):2898–905.

    Article  CAS  Google Scholar 

  14. Han LP, Guo T, Guo Z, Wang CF, Zhang W, Shakya S, et al. Molecular mechanism of loading sulfur hexafluoride in gamma-cyclodextrin metal-organic framework. J Phys Chem B. 2018;122(20):5225–33.

    Article  CAS  Google Scholar 

  15. Abudurusuli A, Wu K, Pan SL. Four new quaternary chalcogenides a(2)Ba(7)Sn(4)Q(16) (a = Li, Na; Q = S, se): syntheses, crystal structures determination, nonlinear optical performances investigation. New J Chem. 2018;42(5):3350–5.

    Article  CAS  Google Scholar 

  16. Nguyen HGT, Weston MH, Sarjeant AA, Gardner DM, An Z, Carmieli R, et al. Design, synthesis, characterization, and catalytic properties of a large-pore metal-organic framework possessing single-site vanady(monocatecholate) moieties. Cryst Growth Des. 2013;13(8):3528–34.

    Article  CAS  Google Scholar 

  17. Logvinenko VA, Yutkin MP, Zavakhina MS, Fedin VP. Porous metal–organic frameworks (MOFs) as matrices for inclusion compounds. J Therm Anal Calorim. 2012;109(2):555–60.

    Article  CAS  Google Scholar 

  18. Li QL, Wang JP, Liu WC, Zhuang XY, Liu JQ, Fan GL, et al. A new (4,8)-connected topological MOF as potential drug delivery. Inorg Chem Commun. 2015;55:8–10.

    Article  Google Scholar 

  19. Smaldone RA, Forgan RS, Furukawa H, Gassensmith JJ, Slawin AMZ, Yaghi OM, et al. Metal-organic frameworks from edible natural products. Angew Chem Int Edit. 2010;49(46):8630–4.

    Article  CAS  Google Scholar 

  20. He YZ, Zhang W, Guo T, Zhang GQ, Qin W, Zhang L, et al. Drug nanoclusters formed in confined nano-cages of CD-MOF: dramatic enhancement of solubility and bioavailability of azilsartan. Acta Pharm Sin B. 2019;9(1):97–106.

    Article  Google Scholar 

  21. Sha J-Q, Wu L-H, Li S-X, Yang X-N, Zhang Y, Zhang Q-N, et al. Synthesis and structure of new carbohydrate metal–organic frameworks and inclusion complexes. J Mol Struct. 2015;1101:14–20.

    Article  CAS  Google Scholar 

  22. Lu H, Yang X, Li S, Zhang Y, Sha J, Li C, et al. Study on a new cyclodextrin based metal–organic framework with chiral helices. Inorg Chem Commun. 2015;61:48–52.

    Article  CAS  Google Scholar 

  23. Deng CH, Li T, Chen JH, Ma JG, Cheng P. The electrochemical discrimination of pinene enantiomers by a cyclodextrin metal-organic framework. Dalton Trans. 2017;46(21):6830–4.

    Article  CAS  Google Scholar 

  24. Aposhian HV. Dmsa and dmps - water-soluble antidotes for heavy-metal poisoning. Annu Rev Pharmacol. 1983;23:193–215.

    Article  CAS  Google Scholar 

  25. Aposhian HV, Aposhian MM. Meso-2,3-dimercaptosuccinic acid - chemical, pharmacological and toxicological properties of an orally effective metal chelating agent. Annu Rev Pharmacol. 1990;30:279–306.

    Article  CAS  Google Scholar 

  26. Mann KV, Travers JD. Succimer, an oral lead chelator. Clin Pharm. 1991;10(12):914–22.

    CAS  PubMed  Google Scholar 

  27. Rushton HG. The evaluation of acute pyelonephritis and renal scarring with technetium 99m-dimercaptosuccinic acid renal scintigraphy: evolving concepts and future directions. Pediatr Nephrol. 1997;11(1):108–20.

    Article  CAS  Google Scholar 

  28. Ren MS, Yang RM. Clinical curative effects of dimercaptosuccinic acid on hepatolenticular degeneration and the impact of DMSA on biliary trace elements. Chinese Med J-Peking. 1997;110(9):694–7.

    CAS  Google Scholar 

  29. Carr GL, Reffner JA, Williams GP. Performance of an infrared microspectrometer at the NSLS. Rev Sci Instrum. 1995;66(2):1490–2.

    Article  CAS  Google Scholar 

  30. Zhang GQ, Meng FY, Guo Z, Guo T, Peng H, Xiao J, et al. Enhanced stability of vitamin a palmitate microencapsulated by gamma-cyclodextrin metal-organic frameworks. J Microencapsul. 2018;35(3):249–58.

    Article  CAS  Google Scholar 

  31. Almeida EV, De Brito SL. Alkaline degradation of lyophilized DMSA prior to labeling with Tc-99m: identification and development of the degradation pathway by HPLC and MS. Nucl Med Biol. 2018;57:20–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staffs from BL01B beamline of National Center for Protein Science Shanghai (NCPSS) at Shanghai Synchrotron Radiation Facility for their assistance in SR-FTIR data collection.

Funding

The authors were financially supported by the project funded by the National Science and Technology Major Projects for “Major New Drugs Innovation and Development” (2018ZX09721002-009), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA12050307).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weifeng Zhu or Jiwen Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 497 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Wu, L., Guo, T. et al. Crystal Transformation of β-CD-MOF Facilitates Loading of Dimercaptosuccinic Acid. AAPS PharmSciTech 20, 224 (2019). https://doi.org/10.1208/s12249-019-1422-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1422-z

KEY WORDS

Navigation