AAPS PharmSciTech

, 20:244 | Cite as

Effects of β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin Inclusions on the Degradation of Magnolol by Intestinal Bacteria

  • Lan Tang
  • Zhuanfeng Zhu
  • Miao Xie
  • Lipeng Cao
  • Xiao Lan Yu
  • Ran Zhang
  • Zhimin Ou
  • Weiguang ShanEmail author
  • Zhenhai ZhangEmail author
Research Article


Cyclodextrin (CD) inclusions are generally used to increase the solubility of poorly soluble drugs. In this study, magnolol (MAG) was used as a model drug for exploring the effects of CD on the degradation of pharmaceutical drugs by intestinal microflora. MAG/β-cyclodextrin (β-CD) and MAG/hydroxypropyl-β-CD (HP-β-CD) inclusion complexes were successfully prepared by the saturated aqueous solution and freeze-drying methods, respectively. Structural characterisation along with analyses of solubility, residual water content and drug content of the inclusion complexes was performed. The intestinal microflora of male rats was used to study MAG degradation in vitro. At three concentrations, the degradation of both the inclusion complexes was slower than that of the MAG monomer, MAG and CD mixtures and the MAG-poloxamer 188 micelle. There were no statistically significant differences in the degradation of the MAG/β-CD and MAG/HP-β-CD inclusion complexes. A simulation first-order equation of the degradation parameters revealed that the degradation of the inclusion complexes was slower and pronounced, judging by slope. The experimental findings were verified by molecular docking for predicting the stable molecular structure of the inclusion complexes. In conclusion, the inclusion complexes partially protected MAG from degradation by the intestinal bacteria.


intestinal flora magnolol inclusion complex degradation 



Cyclodextrin (Fw=~1135, purity ≧98%)






MAG/hydroxypropyl-β-cyclodextrin (DS = 6.1, Fw = 1489, purity ≥ 91%)


Relative standard deviation


Compliance with Ethical Standards

The Laboratory Animal Welfare Ethics Committee of Zhejiang University of Technology approved the animal experiments.


  1. 1.
    Salustio PJ, Pontes P, Conduto C, et al. Advanced technologies for oral controlled release: cyclodextrins for oral controlled release. AAPS PharmSciTech. 2011;12(4):1276–92.CrossRefGoogle Scholar
  2. 2.
    Lv H-X, Zhang Z-H, Jiang H, Waddad A, Zhou J-P. Preparation, physicochemical characteristics and bioavailability studies of an atorvastatin hydroxypropyl-beta-cyclodextrin complex. Pharmazie. 2012;67(1):46–53.PubMedGoogle Scholar
  3. 3.
    Gidwani B, Vyas A. Synthesis, characterization and application of epichlorohydrin-β-cyclodextrin polymer. Colloids Surf B: Biointerfaces. 2014;114:130–7.CrossRefGoogle Scholar
  4. 4.
    Raoov M, Mohamad S, bin Abas M-R, Surikumaran H. New macroporous β-cyclodextrin functionalized ionic liquid polymer as an adsorbent for solid phase extraction with phenols. Talanta. 2014;130:155–63.CrossRefGoogle Scholar
  5. 5.
    Gould S, Scott R-C. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem Toxicol. 2005;43(10):1451–9.CrossRefGoogle Scholar
  6. 6.
    Zhang Z-H, Liu L, Xu D-S. Extraction process of Radix Salviae Miltiorrhizae with the aid of cyclodextrion. Chin Tradit Pat Med. 2005;27(3):264–6.Google Scholar
  7. 7.
    Deroubaix X, Stockis A, Allemon A-M, Lebacq E, Acerbi D, Ventura P. Oral bioavailability of CHF1194, an inclusion complex of piroxicam and β-cyclodextrin, in healthy subjects under single dose and steady-state conditions. Eur J Clin Pharmacol. 1995;47(6):531–6.CrossRefGoogle Scholar
  8. 8.
    Zhang X-W, Zhang T-P, Lan Y-L, Wu B-J, Shi Z-H. Nanosuspensions containing oridonin/HP-β-cyclodextrin inclusion complexes for oral bioavailability enhancement via improved dissolution and permeability. AAPS PharmSciTech. 2016;17(2):400–8.CrossRefGoogle Scholar
  9. 9.
    Chen Y-H, Huang P-H, Lin F-Y, Chen W-C, Chen Y-L, Yin W-H, et al. Magnolol: a multifunctional compound isolated from the Chinese medicinal plant Magnolia officinalis. Eur J Integr Med. 2011;3(4):e317–e24.CrossRefGoogle Scholar
  10. 10.
    Behbehani J, Shreaz S, Irshad M, Karched M. The natural compound magnolol affects growth, biofilm formation, and ultrastructure of oral Candida isolates. Microb Pathog. 2017;113:209–17.CrossRefGoogle Scholar
  11. 11.
    Shen P, Zhang Z, He Y, Gu C, Zhu K, Li S, et al. Magnolol treatment attenuates dextran sulphate sodium-induced murine experimental colitis by regulating inflammation and mucosal damage. Life Sci. 2018;196:69–76.CrossRefGoogle Scholar
  12. 12.
    Gao X, Patel M-G, Bakshi P, Sharma D, Banga AK. Enhancement in the transdermal and localized delivery of honokiol through breast tissue. AAPS PharmSciTech. 2018;19(8):3501–11.CrossRefGoogle Scholar
  13. 13.
    Kim D-J, Kim Y-S. Magnolol protects against trimethyltin-induced neuronal damage and glial activation in vitro and in vivo. Neurotoxicology. 2016;53:173–85.CrossRefGoogle Scholar
  14. 14.
    Chen X, Hao K, Yu X, Huang A, Zhu B, Wang G-X, et al. Magnolol protects Ctenopharyngodon idella kidney cells from apoptosis induced by grass carp reovirus. Fish Shellfish Immun. 2018;74:426–35.CrossRefGoogle Scholar
  15. 15.
    Tang L, Qiu S-B, Wu L, Lv L-F, Lv H-X, Shan W-G. Preparation and in vitro dissolution of magnolol solid dispersion. Chin J Chin Mater Med. 2016;41(3):433–7.Google Scholar
  16. 16.
    Radu C-D, Parteni O, Ochiuz L. Applications of cyclodextrins in medical textiles—review. J Control Release. 2016;224:146–57.CrossRefGoogle Scholar
  17. 17.
    Qiu N, Shen B, Li X, Zhang X, Sang Z, Yang T, et al. Inclusion complex of magnolol with hydroxypropyl-β-cyclodextrin: characterization, solubility, stability and cell viability. J Incl Phenom Macrocycl Chem. 2016;85(3–4):289–301.CrossRefGoogle Scholar
  18. 18.
    Brandtzaeg P. The gut as communicator between environment and host: immunological consequences. Eur J Pharmacol. 2011;668:S16–32.CrossRefGoogle Scholar
  19. 19.
    Sankar S-A, Lagier J-C, Pontarotti P, Raoult D, Fournier P-E. The human gut microbiome, a taxonomic conundrum. Syst Appl Microbiol. 2015;38(4):276–86.CrossRefGoogle Scholar
  20. 20.
    Hyland N-P, Cryan J-F. Microbe-host interactions: influence of the gut microbiota on the enteric nervous system. Dev Biol. 2016;417(2):182–7.CrossRefGoogle Scholar
  21. 21.
    Jiang D, Zhang L, Cao Y, Yao W. Application of gut microbiota in research of Chinese medicines. China Journal of Chinese Materia Medica. 2016;41(17):3218–25.PubMedGoogle Scholar
  22. 22.
    Umesaki Y, Setoyama H. Structure of the intestinal flora responsible for development of the gut immune systemin a rodent model. Microbes Infect. 2000;2(11):1343–51.CrossRefGoogle Scholar
  23. 23.
    Nishimura M, Ohkawara T, Kagami-Katsuyama H, Sekiguchi S, Taira T, Tsukada M, et al. Alteration of intestinal flora by the intake of enzymatic degradation products of adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) with improvement of skin condition. J Funct Foods. 2014;7:487–94.CrossRefGoogle Scholar
  24. 24.
    Yu H-N, Zhu J, Pan W-S, Shen S-R, Shan W-G, Das UN. Effects of fish oil with a high content of n-3 polyunsaturated fatty acids on mouse gut microbiota. Arch Med Res. 2014;45(3):195–202.CrossRefGoogle Scholar
  25. 25.
    Men W, Chen Y, Li YJ, Yang Q, Weng X-G, Gong Z-P, et al. Research progress of biotransformation on effective ingredients of Chinese medicine via intestinal bacteria. Chin J Exp Tradit Med Formulae. 2015;21(2):229–34.Google Scholar
  26. 26.
    Yu H, Guo Z, Shen S, Shan W. Effects of taurine on gut microbiota and metabolism in mice. Amino Acids. 2016;48(7):1601–17.CrossRefGoogle Scholar
  27. 27.
    Yu H, Li R, Huang H, Yao R, Shen S. Short-chain fatty acids enhance the lipid accumulation of 3T3-L1 cells by modulating the expression of enzymes of fatty acid metabolism. Lipids. 2018;53(1):77–84.CrossRefGoogle Scholar
  28. 28.
    Luo Y, Yang W, Sun H-Y, Sun J, Dong L, Chen S-Y, et al. Metabolism of gallic acid and protocatechuic acid in rat intestinal flora. Journal of Shenyang Pharmaceutical University. 2017;34(1):43–7.Google Scholar
  29. 29.
    Lin W-Z, Li K-P, Zeng Y-B, Zhou X-R. Analysis of the metabolites of isorhamnetin-3-O-β-D-rutinoside in rat intestinal flora in vitro by UPLC-ESI-Q-TOF-MS-MS. Chin J Exp Tradit Med Formulae. 2012;18(20):140–3.Google Scholar
  30. 30.
    Pei L-K, Guo B-L. Advances in studies on absorption and metabolism of flavonoids. J Chin Pharm. 2006;41(8):568–72.Google Scholar
  31. 31.
    Barman S, Barman B-K, Roy M-N. Preparation, characterization and binding behaviors of host-guest inclusion complexes of metoclopramide hydrochloride with α- and β-cyclodextrin molecules. J Mol Struct. 2018;1155:503–12.CrossRefGoogle Scholar
  32. 32.
    Deng Y-H, Pang Y-H, Guo Y-F, Ren Y-F, Wang F, Liao X-L, et al. Host-guest inclusion systems of daidzein with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD): preparation, binding behaviors and water solubility. J Mol Struct. 2016;1118:307–15.CrossRefGoogle Scholar
  33. 33.
    Kundu M, Saha S, Roy M-N. Evidences for complexations of β-cyclodextrin with some amino acids by 1H NMR, surface tension, volumetric investigations and XRD. J Mol Liq. 2017;240:570–7.CrossRefGoogle Scholar
  34. 34.
    Tejada G, Lamas M-C, Sortino M, Alvarez VA, Leonardi D. Composite microparticles based on natural mucoadhesive polymers with promising structural properties to protect and improve the antifungal activity of miconazole nitrate. AAPS PharmSciTech. 2018;19(8):3712–22.CrossRefGoogle Scholar
  35. 35.
    Liao Y, Zhang X, Li C, Huang Y, Lei M, Yan M, et al. Inclusion complexes of HP-β-cyclodextrin with agomelatine: preparation, characterization, mechanism study and in vivo evaluation. Carbohydr Polym. 2016;147:415–25.CrossRefGoogle Scholar
  36. 36.
    Yin M-Z, Yang Z-C, Bao Y, Gan J, Cai J-H. Preparation and characterization of norepinephrine cantharidi-poloxamer polymer nano-micelle. J Hubei Polytech Univ. 2015;31(6):43–6.Google Scholar
  37. 37.
    Bao Y, Zhen F, Lian Z, Zhang J-P, Tao Y, Qian M-S, et al. In vitro metabolic transformation of syringin by rat intestinal flora. China Tradit Herbal Drugs. 2015;46(9):1333–7.Google Scholar
  38. 38.
    Cao D, Fan Z, Zhu J-P, Yang B, Zhou L, Jin J. Effect of rat intestinal bacteria on metabolism of pedunculoside in vitro. China Pharm. 2016;19(4):621–4.Google Scholar
  39. 39.
    Tang L, Fu L-L, Shen L-T, Sun B-X, Zhu Z-F, Yu X-L, et al. Degradation of total saponins of Panax notoginsengby intestinal flora of rats in vitro. China Tradit Herbal Drugs. 2018;49(2):396–9.Google Scholar
  40. 40.
    Hattori M, Sakamoto T, Endo Y, Kakiuchi N, Kobashi K, Mizuno T, et al. Metabolism of magnolol from Magnoliae cortex. I. Application of liquid chromatography-mass spectrometry to the analysis of metabolites of magnolol in rats. Chem Pharm Bull. 1984;32:5010–7.CrossRefGoogle Scholar
  41. 41.
    Jian W-J, Zeng Y, Xiong H-J, Pang J. Molecular simulation of the complex of konjac glucomannan–borate in water. Carbohydr Polym. 2011;85(2):452–6.CrossRefGoogle Scholar
  42. 42.
    Yadav P, Bandyopadhyay A, Chakraborty A, Sarkar K. Enhancement of anticancer activity and drug delivery of chitosan-curcumin nanoparticle via molecular docking and simulation analysis. Carbohydr Polym. 2018;182:188–98.CrossRefGoogle Scholar
  43. 43.
    Su D-H, Zhou M, Tang X-Z, Cui C-Y, Liu S, Wei W-X. Solubility determination and separation of magnolol and honoki. J Guangxi Univ. 2012;37(6):1131–5.Google Scholar
  44. 44.
    Yun F, Xu X, Di L, Kang A, Shan J, Zhao X, et al. Preparation of different osthole cyclodextrin inclusion complex and comparison on their bioavailability. Chinese Pharmaceutical Journal. 2014;47(8):341–8.Google Scholar
  45. 45.
    Zhu Z. Preparation, physicochemical properties and bioavailability of magnolol phospholipid complexes. Northwest University; 2013.Google Scholar
  46. 46.
    Zhang W, Huang Q, Xiang Z, Cheng W. Biotransformation of polydatin by rat intestinal bacteria. J Chin Pharm. 2012;47(8):631–4.Google Scholar
  47. 47.
    Li N, Song Y, Zhang WZ, Wang W, Chen J-S, Wong A-W, et al. Evaluation of the in vitro and in vivo genotoxicity of magnolia bark extract. Regul Toxicol Pharmacol. 2007;49(3):154–9.CrossRefGoogle Scholar
  48. 48.
    Dai Y-H, Wang M, Zhu Y-N, Wang L-L, Ju J-M, Zhang Z-H. Effect of D-cellobiose on oral bioavailability of gentiopicroside. Chin J Chin Mater Med. 2016;41(10):1855–9.Google Scholar
  49. 49.
    Korte C, Quodbach J. 3D-printed network structures as controlled-release drug delivery systems: dose adjustment, API release analysis and prediction. AAPS PharmSciTech. 2018;19(8):3333–42.CrossRefGoogle Scholar
  50. 50.
    Antenucci R-N, Palmer J-K. Enzymatic degradation of α- and β-cyclodextrins by bacteroides of the human colon. J Agric Food Chem. 1984;32(6):1316–21.CrossRefGoogle Scholar
  51. 51.
    Fetzner A, Böhm S, Schreder S, Schubert R. Degradation of raw or film-incorporated β-cyclodextrin by enzymes and colonic bacteria. Eur J Pharm Biopharm. 2004;58(1):91–7.CrossRefGoogle Scholar
  52. 52.
    Li X, Song F-R, Liu Z-Q, editors. Studies on the metabolites of diester-type aconitum alkaloids intestinal bacteria using direct analysis in real time (DART) mass spectrometry. The 11th National Doctoral Academic Annual Meeting (Biomedical Topics); 2013; Beijing.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Lan Tang
    • 1
  • Zhuanfeng Zhu
    • 1
  • Miao Xie
    • 1
  • Lipeng Cao
    • 1
  • Xiao Lan Yu
    • 1
  • Ran Zhang
    • 1
  • Zhimin Ou
    • 1
  • Weiguang Shan
    • 1
    Email author
  • Zhenhai Zhang
    • 2
    • 3
    Email author
  1. 1.College of Pharmaceutical ScienceZhejiang University of TechnologyHangzhouPeople’s Republic of China
  2. 2.Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese MedicineNanjingPeople’s Republic of China
  3. 3.Jiangsu Province Academy of Traditional Chinese MedicineNanjingPeople’s Republic of China

Personalised recommendations