Skip to main content
Log in

Highly Soluble Glimepiride and Irbesartan Co-amorphous Formulation with Potential Application in Combination Therapy

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

One-third of the population of the USA suffers from metabolic syndrome (MetS). Treatment of patients with MetS regularly includes drugs prescribed simultaneously to treat diabetes and cardiovascular diseases. Therefore, the development of novel multidrug formulations is recommended. However, the main problem with these drugs is their low solubility. The use of binary co-amorphous systems emerges as a promising strategy to increase drug solubility. In the present study, irbesartan (IBS) and glimepiride (GMP), class II active pharmaceutical ingredients (API), widely used in the treatment of arterial hypertension and diabetes, were selected to develop a novel binary co-amorphous system with remarkable enhancement in the dissolution of both APIs. The phase diagram of IBS–GMP was constructed and co-amorphous systems were prepared by melt-quench, in a wide range of compositions. Dissolution profile (studied at pH 1.2 and 37°C for mole fractions 0.01, 0.1, and 0.5) demonstrated that the xGMP = 0.01 formulation presents the highest enhancement in its dissolution. GMP went from being practically insoluble to reach 3.9 ± 0.9 μg/mL, and IBS showed a 12-fold increment with respect to the dissolution of its crystalline form. Infrared studies showed that the increase in the dissolution profile is related to the intermolecular interactions (hydrogen bonds), which were dependent of composition. Results of structural and thermal characterization performed by XRD and DSC showed that samples have remained in amorphous state for more than 10 months of storage. This work contributes to the development of a highly soluble co-amorphous drugs with potential used in the treatment of MetS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aguilar M, Bhuket T, Torres S, Liu B, Wong R. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA. 2015;313(19):1973–4.

    Article  CAS  PubMed  Google Scholar 

  2. O’Neill S, O’Driscoll L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev. 2015;16(1):1–12.

    Article  PubMed  Google Scholar 

  3. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation. 2005;112(17):2735–52.

    Article  PubMed  Google Scholar 

  4. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  CAS  PubMed  Google Scholar 

  5. Savjani KT, Gajjar AK, Drug Solubility SJK. Importance and enhancement techniques. ISRN Pharm. 2012;2012:1–10.

    Google Scholar 

  6. Martínez LM, Videa M, López-Silva GA, de los Reyes CA, Cruz-Angeles J, González N. Stabilization of amorphous paracetamol based systems using traditional and novel strategies. Int J Pharm. 2014;477(1–2):294–305.

    Article  PubMed  CAS  Google Scholar 

  7. Korhonen O, Pajula K, Laitinen R. Rational excipient selection for co-amorphous formulations. Expert Opin Drug Deliv. 2017;14(4):551–69.

    Article  CAS  PubMed  Google Scholar 

  8. van Drooge DJ, Hinrichs WLJ, Visser MR, Frijlink HW. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques. Int J Pharm. 2006;310(1–2):220–9.

    Article  PubMed  CAS  Google Scholar 

  9. Chavan RB, Thipparaboina R, Kumar D, Shastri NR. Co amorphous systems: a product development perspective. Int J Pharm. 2016;515(1):403–15.

    Article  CAS  PubMed  Google Scholar 

  10. Martínez LM, Videa M, Sosa NG, Ramírez JH, Castro S. Long-term stability of new co-amorphous drug binary systems: study of glass transitions as a function of composition and shelf time. Molecules. 2016;21(12):1–13.

    Article  CAS  Google Scholar 

  11. Shayanfar A, Jouyban A. Drug-drug coamorphous systems: characterization and physicochemical properties of coamorphous atorvastatin with carvedilol and glibenclamide. J Pharm Innov. 2013;8(4):218–28.

    Article  Google Scholar 

  12. Löbmann K, Strachan C, Grohganz H, Rades T, Korhonen O, Laitinen R. Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions. Eur J Pharm Biopharm. 2012;81(1):159–69.

    Article  PubMed  CAS  Google Scholar 

  13. Knapik J, Wojnarowska Z, Grzybowska K, Jurkiewicz K, Tajber L, Paluch M. Molecular dynamics and physical stability of coamorphous ezetimib and indapamide mixtures. Mol Pharm. 2015;12(10):3610–9.

    Article  CAS  PubMed  Google Scholar 

  14. Wairkar S, Gaud R. Co-amorphous combination of nateglinide-metformin hydrochloride for dissolution enhancement. AAPS PharmSciTech. 2015;17(17):673–81.

    PubMed  Google Scholar 

  15. Renuka SSK, Gulati M, Narang R. Stable amorphous binary systems of glipizide and atorvastatin powders with enhanced dissolution profiles: formulation and characterization. Pharm Dev Technol. 2017;22(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  16. Haneef J, Chadha R. Drug-drug multicomponent solid forms : cocrystal , coamorphous and eutectic of three poorly soluble antihypertensive drugs using mechanochemical approach. AAPS PharmSciTech. 2017;18:2279–90.

    Article  CAS  PubMed  Google Scholar 

  17. Adahalli SB, Talluri M. Formulation and evaluation of tablet prepared by coamorphous system containing anti-hypertensive and anti-hyperlipidemic drug. Int J Pharm Pharm Sci. 2016;8(9):182.

    Article  CAS  Google Scholar 

  18. Moinuddin SM, Ruan S, Huang Y, Gao Q, Shi Q, Cai B, et al. Facile formation of co-amorphous atenolol and hydrochlorothiazide mixtures via cryogenic-milling: enhanced physical stability, dissolution and pharmacokinetic profile. Int J Pharm. 2017;532(1):393–400.

    Article  CAS  PubMed  Google Scholar 

  19. Riekes MK, Engelen A, Appeltans B, Rombaut P, Stulzer HK, Van Den Mooter G. New perspectives for fixed dose combinations of poorly water-soluble compounds: a case study with ezetimibe and lovastatin. Pharm Res. 2016;33(5):1259–75.

    Article  CAS  PubMed  Google Scholar 

  20. Martínez-Jiménez C, Cruz-Angeles J, Videa M, Martínez L. Co-amorphous simvastatin-nifedipine with enhanced solubility for possible use in combination therapy of hypertension and hypercholesterolemia. Molecules. 2018;23(9):2161.

    Article  PubMed Central  CAS  Google Scholar 

  21. Allesø M, Chieng N, Rehder S, Rantanen J, Rades T, Aaltonen J. Enhanced dissolution rate and synchronized release of drugs in binary systems through formulation : amorphous naproxen – cimetidine mixtures prepared by mechanical activation. J Control Release. 2009;136:45–53.

    Article  PubMed  CAS  Google Scholar 

  22. Li HY, Pan TT, Cui Y, Li XX, Gao JF, Yang WZ, et al. Improved oral bioavailability of poorly water-soluble glimepiride by utilizing microemulsion technique. Int J Nanomedicine. 2016;11:3777–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Zhu W, Lin Q, Han J, Jiang L, Zhang L. Hydroxypropyl-β-cyclodextrin functionalized calcium carbonate microparticles as a potential carrier for enhancing oral delivery of water-insoluble drugs. Int J Nanomedicine. 2015;10:3291–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alhazmi H, Alnami A, Arishi M, Alameer R, Al Bratty M, Rehman Z, et al. A fast and validated reversed-phase HPLC method for simultaneous determination of simvastatin, atorvastatin, telmisartan and Irbesartan in bulk drugs and tablet formulations. Sci Pharm. 2018;86(1):1–13.

    Article  Google Scholar 

  25. Candido R, Allen TJ, Lassila M, Cao Z, Thallas V, Cooper ME, et al. Irbesartan but not amlodipine suppresses diabetes-associated atherosclerosis. Circulation. 2004;109(12):1536–42.

    Article  CAS  PubMed  Google Scholar 

  26. Ahmed TA, Suhail MAA, Hosny KM, Abd-Allah FI. Clinical pharmacokinetic study for the effect of glimepiride matrix tablets developed by quality by design concept. Drug Dev Ind Pharm. 2018;44(1):66–81.

    Article  CAS  PubMed  Google Scholar 

  27. Reginald-Opara JN, Attama A, Ofokansi K, Umeyor C, Kenechukwu F. Molecular interaction between glimepiride and Soluplus-PEG 4000 hybrid based solid dispersions: characterisation and anti-diabetic studies. Int J Pharm. 2015;496(2):741–50.

    Article  CAS  PubMed  Google Scholar 

  28. Ramu A, Vidyadhara S, Devanna N, Anusha C, Keerthi J. Formulation and evaluation of rosuvastatin fast dissolving tablets. Asian J Chem. 2013;25(10):5340–6.

    Article  CAS  Google Scholar 

  29. Adeli E. Irbesartan-loaded electrospun nanofibers-based PVP K90 for the drug dissolution improvement: fabrication, in vitro performance assessment, and in vivo evaluation. J Appl Polym Sci. 2015;132(27):42212(1–10).

    Article  CAS  Google Scholar 

  30. Taupitz T, Dressman JB, Klein S. New formulation approaches to improve solubility and drug release from fixed dose combinations: case examples pioglitazone/glimepiride and ezetimibe/simvastatin. Eur J Pharm Biopharm. 2013;84(1):208–18.

    Article  CAS  PubMed  Google Scholar 

  31. Hirlekar R, Kadam V. Preformulation study of the inclusion complex irbesartan-beta-cyclodextrin. AAPS PharmSciTech. 2009;10(1):276–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dengale SJ, Ranjan OP, Hussen SS, Krishna BSM, Musmade PB, Gautham Shenoy G, et al. Preparation and characterization of co-amorphous ritonavir-indomethacin systems by solvent evaporation technique: improved dissolution behavior and physical stability without evidence of intermolecular interactions. Eur J Pharm Sci. 2014;62:57–64.

    Article  CAS  PubMed  Google Scholar 

  33. Laitinen R, Lobmann K, Strachan CJ, Grohganz H, Rades T. Emerging trends in the stabilization of amorphous drugs. Int J Pharm. 2013;453(1):65–79.

    Article  CAS  PubMed  Google Scholar 

  34. An J-H, Lim C, Kiyonga A, Chung I, Lee I, Mo K, et al. Co-amorphous screening for the Solubility enhancement of poorly water-soluble mirabegron and investigation of their intermolecular interactions and dissolution behaviors. Pharmaceutics. 2018;10(3):149.

    Article  PubMed Central  CAS  Google Scholar 

  35. Du B, Shen G, Wang D, Pang L, Chen Z, Liu Z. Development and characterization of glimepiride nanocrystal formulation and evaluation of its pharmacokinetic in rats. Drug Deliv. 2013;20(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  36. Boutonnet-Fagegaltier N, Menegotto J, Lamure A, Duplaa H, Caron A, Lacabanne C, et al. Molecular mobility study of amorphous and crystalline phases of a pharmaceutical product by thermally stimulated current spectrometry. J Pharm Sci. 2002;91(6):1548–60.

    Article  CAS  PubMed  Google Scholar 

  37. Wang J, Chang R, Zhao Y, Zhang J, Zhang T, Fu Q, et al. Coamorphous loratadine-citric acid system with enhanced physical stability and bioavailability. AAPS PharmSciTech. 2017 Oct 21;18(7):2541–50.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Z, Ji J. Large-scale preparation of stable irbesartan nanoparticles by high-gravity liquid antisolvent precipitation technique. Powder Technol. 2017;305:546–52.

    Article  CAS  Google Scholar 

  39. Zhang Z-L, Le Y, Wang J-X, Chen J-F. Preparation of stable micron-sized crystalline irbesartan particles for the enhancement of dissolution rate. Drug Dev Ind Pharm. 2011;37(March):1357–64.

    Article  PubMed  CAS  Google Scholar 

  40. Boghra RJ, Kothawade PC, Belgamwar VS, Nerkar PP, Tekade AR, Surana SJ. Solubility, dissolution rate and bioavailability enhancement of irbesartan by solid dispersion technique. Chem Pharm Bull (Tokyo). 2011;59(4):438–41.

    Article  CAS  Google Scholar 

  41. Enturi V, By C, Chowdary KP. Enhancement of dissolution rate and formulation development of irbesartan tablets by employing starch phosphate: a new modified starch. Asian J Pharm. 2014;8(3):171.

    Article  Google Scholar 

  42. Nagpal M, Nagpal K, Rajera R, Rakha P, Singh S, Mishra D. Dissolution enhancement of glimepiride using modified gum karaya as a carrier. Int J Pharm Investig. 2012;2(1):42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reven S, Grdadolnik J, Kristl J, Žagar E. Hyperbranched poly (esteramides) as solubility enhancers for poorly water-soluble drug glimepiride. Int J Pharm. 2010;396(1–2):119–26.

    Article  CAS  PubMed  Google Scholar 

  44. Steiner T. The hydrogen bond in the solid state. Angew Chem Int Ed. 2002;41(1):49–76.

    Article  Google Scholar 

  45. Kaushal AM, Chakraborti AK, Bansal AK. FTIR studies on differential intermolecular association in crystalline and amorphous states of structurally related non-steroidal anti-inflammatory drugs. Mol Pharm. 2008;5(6):937–45.

    Article  CAS  PubMed  Google Scholar 

  46. S a J, Kurup NS. Formulation of Irbesartan by microcrystal technology for enhancing the solubility and dissolution properties. Int J Pharm Sci Nanotechnol. 2013;6(2):2064–76.

    Google Scholar 

  47. Franca CA, Etcheverry SB, Pis Diez R, Williams PAM. Irbesartan: FTIR and Raman spectra. Density functional study on vibrational and NMR spectra. J Raman Spectrosc. 2009;40(9):1296–300.

    Article  CAS  Google Scholar 

  48. Pan Y, Pang W, Lv J, Wang J, Yang C, Guo W. Solid state characterization of azelnidipine–oxalic acid co-crystal and co-amorphous complexes: the effect of different azelnidipine polymorphs. J Pharm Biomed Anal. 2017 May;138:302–15.

    Article  CAS  PubMed  Google Scholar 

  49. Pandey MM, Jaipal A, Charde SY, Goel P, Kumar L. Dissolution enhancement of felodipine by amorphous nanodispersions using an amphiphilic polymer: insight into the role of drug-polymer interactions on drug dissolution. Pharm Dev Technol. 2016;21(4):463–74.

    CAS  PubMed  Google Scholar 

  50. Rajpurohit VS, Rakha P, Goyal S, Dureja H, Arorac G, Nagpal M. Formulation and characterization of solid dispersions of glimepiride through factorial design. Iran J Pharm Sci. 2011;7(1):7–16.

    CAS  Google Scholar 

  51. Li H, Ma L, Li X, Cui X, Yang W, Shen S, et al. A simple and effective method to improve bioavailability of glimepiride by utilizing hydrotropy technique. Eur J Pharm Sci. 2015;77:154–60.

    Article  CAS  PubMed  Google Scholar 

  52. Singh OPB, Biswal S, Sahoo J, Murthy PN. Physicochemical properties of glimepiride in solid dispersions with polyethylene glycol 20000. Int J Pharm Sci Nanotechnol. 2009;2(2):537–43.

    CAS  Google Scholar 

  53. Iwata M, Fukami T, Kawashima D, Sakai M, Furuishi T, Suzuki T, et al. Effectiveness of mechanochemical treatment with cyclodextrins on increasing solubility of glimepiride. Pharmazie. 2009;64(6):390–4.

    CAS  PubMed  Google Scholar 

  54. Dalsania S, Sharma J, Munjal B, Bansal AK. Impact of drug-polymer miscibility on enthalpy relaxation of Irbesartan amorphous solid dispersions. Pharm Res. 2018;35(2):29.

    Article  PubMed  CAS  Google Scholar 

  55. Chawla G. Molecular mobility and physical stability of amorphous irbesartan. Sci Pharm. 2009;77(3):695–709.

    Article  CAS  Google Scholar 

  56. Wang L-P, Jiang Y, Yang H, Peng C, Zhang C, Tao X, et al. Combination therapy of nifedipine and sulphonylureas exhibits a mutual antagonistic effect on the endothelial cell dysfunction induced by hyperglycemia linked to vascular disease. Cell Physiol Biochem. 2016;38(6):2337–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JCA thanks the scholarships provided by CONACyT (285482). We also thank the Center of Biotechnology and Centro del Agua para América Latina y el Caribe, CAALCA, for access to the HPLC facilities.

Funding

We thank the financial support provided by Secretaría de Eduación Pública y Consejo Nacional de Ciencia y Tecnología (SEP-CONACyT) through the Basic Scientific Research Program (No. 255135), and the School of Engineering and Sciences at Tecnologico de Monterrey and the Research Chair of Emerging Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz María Martínez.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz-Angeles, J., Videa, M. & Martínez, L.M. Highly Soluble Glimepiride and Irbesartan Co-amorphous Formulation with Potential Application in Combination Therapy. AAPS PharmSciTech 20, 144 (2019). https://doi.org/10.1208/s12249-019-1359-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1359-2

KEY WORDS

Navigation