AAPS PharmSciTech

, 20:143 | Cite as

Stability and Bioavailability Enhancement of Telmisartan Ternary Solid Dispersions: the Synergistic Effect of Polymers and Drug-Polymer(s) Interactions

  • Xiangjun ShiEmail author
  • Tiantian Xu
  • Wan Huang
  • Baibai Fan
  • Xiaoxia Sheng
Research Article


The purpose of this study was to investigate the synergistic effect of polymers and drug-polymer(s) interactions on the improved stability and bioavailability of telmisartan (TEL) ternary solid dispersions. As a water-insoluble drug, 40 and 160 mg doses of TEL tablets exhibited bioavailabilities of 42% and 58%, respectively. Through polymer screening, PVP K30 and/or Soluplus were selected and used at different concentrations to prepare TEL amorphous solid dispersions by solvent evaporation. Compared to pure TEL and TEL-PVP K30/Soluplus binary solid dispersions, TEL-PVP K30–Soluplus ternary solid dispersions demonstrated significant advantages, including higher dissolution (over 90% release at 60 min), better amorphous stability (physically stable in 90 days), and improved oral bioavailability (Cmax of 5535.819 ± 325.67 ng/mL and tmax of 1 h). These advantages were related to the complementarity of PVP K30 and Soluplus on TEL. PVP K30 had a better activity to solubilize TEL and achieved a high TEL initial concentration in dissolution media. Simultaneously, the ability of Soluplus to assist in the maintenance of supersaturation played an important role. PVP K30 and Soluplus together inhibited crystallization of the drug at different stages. The existence and intensity of drug-polymer interactions were also determined by DSC (Tg determination) and FT-IR. At the molecular level, a hypothesis was also proposed that the enhancements resulted from the contribution of the synergistic effect between PVP K30 and Soluplus. These results suggested that two polymers, in a combination and via a synergistic effect, could further enhance the bioavailability and amorphous stability of ternary solid dispersions.


telmisartan ternary solid dispersions synergistic effect stability bioavailability 



This work was supported by Project 21606203 of the Natural Science Foundation of China. Sincere thanks are given to Yehui Chen, Lin Yang, and Fuqi Fei (Zhejiang University of Technology) for assisting in the pharmacokinetic study.


  1. 1.
    Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420(1):1–10.CrossRefGoogle Scholar
  2. 2.
    Paidi SK, Jena SK, Ahuja BK, Devasari N, Suresh S. Preparation, in-vitro and in-vivo evaluation of spray-dried ternary solid dispersion of biopharmaceutics classification system class II model drug. J Pharm Pharmacol. 2015;67(5):616–29.CrossRefGoogle Scholar
  3. 3.
    Scholz A, Abrahamsson B, Diebold SM, Kostewicz E, Polentarutti BI, Ungell A-L, et al. Influence of hydrodynamics and particle size on the absorption of felodipine in labradors. Pharm Res. 2002;19(1):42–6.CrossRefGoogle Scholar
  4. 4.
    Sigfridsson K, Ahlqvist M, Lindsjo M, Paulsson S. Salt formation improved the properties of a candidate drug during early formulation development. Eur J Pharm Sci. 2018;120:162–71.CrossRefGoogle Scholar
  5. 5.
    Tang P, Wang L, Ma X, Xu K, Xiong X, Liao X, et al. Characterization and in vitro evaluation of the complexes of posaconazole with beta- and 2,6-di-O-methyl-beta-cyclodextrin. AAPS PharmSciTech. 2017;18(1):104–14.CrossRefGoogle Scholar
  6. 6.
    Patel J, Dhingani A, Garala K, Raval M, Sheth N. Design and development of solid nanoparticulate dosage forms of telmisartan for bioavailability enhancement by integration of experimental design and principal component analysis. Powder Tech. 2014;258:331–43.CrossRefGoogle Scholar
  7. 7.
    Ellenberger DJ, Miller DA, Kucera SU, Williams RO. Improved vemurafenib dissolution and pharmacokinetics as an amorphous solid dispersion produced by KinetiSol® processing. AAPS PharmSciTech. 2018;19(5):1957–70.CrossRefGoogle Scholar
  8. 8.
    Sekiguchi K, Obi N. Studies on absorption of eutectic mixture I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull. 1961;9:866–72.CrossRefGoogle Scholar
  9. 9.
    Shah J, Vasanti S, Anroop B, Vyas H. Enhancement of dissolution rate of valdecoxib by solid dispersions technique with PVP K 30 & PEG 4000: preparation and in vitro evaluation. J Incl Phenom Macrocycl Chem. 2008;63(1–2):69–75.Google Scholar
  10. 10.
    Jahan R, Islam MS, Tanwir A, Chowdhury JA. In vitro dissolution study of atorvastatin binary solid dispersion. J Adv Pharm Technol Res. 2013;4(1):18–24.CrossRefGoogle Scholar
  11. 11.
    Lavan M, Knipp G. Effects of dendrimer-like biopolymers on physical stability of amorphous solid dispersions and drug permeability across Caco-2 cell monolayers. AAPS PharmSciTech. 2018;19(6):2459–71.CrossRefGoogle Scholar
  12. 12.
    Alonzo DE, Zhang GGZ, Zhou D, Gao Y, Taylor LS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27(4):608–18.CrossRefGoogle Scholar
  13. 13.
    Al-Obaidi H, Buckton G. Evaluation of griseofulvin binary and ternary solid dispersions with HPMCAS. AAPS PharmSciTech. 2009;10(4):1172–7.CrossRefGoogle Scholar
  14. 14.
    Xie T, Taylor LS. Effect of temperature and moisture on the physical stability of binary and ternary amorphous solid dispersions of celecoxib. J Pharm Sci. 2017;106(1):100–10.CrossRefGoogle Scholar
  15. 15.
    Chauhan H, Kuldipkumar A, Barder T, Medek A, Gu CH, Atef E. Correlation of inhibitory effects of polymers on indomethacin precipitation in solution and amorphous solid crystallization based on molecular interaction. Pharm Res. 2014;31(2):500–15.CrossRefGoogle Scholar
  16. 16.
    Trasi NS, Taylor LS. Effect of polymers on nucleation and crystal growth of amorphous acetaminophen. CrystEngComm. 2012;14(16):5188–97.CrossRefGoogle Scholar
  17. 17.
    Trasi NS, Abbou Oucherif K, Litster JD, Taylor LS. Evaluating the influence of polymers on nucleation and growth in supersaturated solutions of acetaminophen. CrystEngComm. 2015;17(6):1242–8.CrossRefGoogle Scholar
  18. 18.
    Sheng X, Tang J, Bao J, Shi X, Su W. Enhancement of in vitro dissolution and in vivo performance/oral absorption of FEB-poloxamer-TPGS solid dispersion. Journal of Drug Delivery Science and Technology. 2018;46:408–15.CrossRefGoogle Scholar
  19. 19.
    Wairkar S, Gaud R, Jadhav N. Enhanced dissolution and bioavailability of Nateglinide by microenvironmental pH-regulated ternary solid dispersion: in-vitro and in-vivo evaluation. J Pharm Pharmacol. 2017;69(9):1099–109.CrossRefGoogle Scholar
  20. 20.
    Alaziz DMA, Sammour OA, Elshamy AEAA, Neseem DI. Formulation and evaluation of binary and ternary solid dispersions of domperidone by solvent evaporation method. Afr J Pharm Pharmacol. 2014;8(3):66–80.CrossRefGoogle Scholar
  21. 21.
    Mooter GV, Wuyts M, Blaton N, Busson R, Grobet P, Augustijns P, et al. Physical stabilization of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur J Pharm Sci. 2001;12:261–9.CrossRefGoogle Scholar
  22. 22.
    Song Y, Yang X, Chen X, Nie H, Byrn S, Lubach JW. Investigation of drug-excipient interactions in lapatinib amorphous solid dispersions using solid-state NMR spectroscopy. Mol Pharm. 2015;12(3):857–66.CrossRefGoogle Scholar
  23. 23.
    Ueda H, Wu W, Lobmann K, Grohganz H, Mullertz A, Rades T. Application of a salt coformer in a co-amorphous drug system dramatically enhances the glass transition temperature: a case study of the ternary system carbamazepine, citric acid, and l-arginine. Mol Pharm. 2018;15(5):2036–44.CrossRefGoogle Scholar
  24. 24.
    Prasad D, Chauhan H, Atef E. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects. J Pharm Sci. 2014;103(11):3511–23.CrossRefGoogle Scholar
  25. 25.
    Prasad D, Chauhan H, Atef E. Role of molecular interactions for synergistic precipitation inhibition of poorly soluble drug in supersaturated drug-polymer-polymer ternary solution. Mol Pharm. 2016;13(3):756–65.CrossRefGoogle Scholar
  26. 26.
    Albadarin AB, Potter CB, Davis MT, Iqbal J, Korde S, Pagire S, et al. Development of stability-enhanced ternary solid dispersions via combinations of HPMCP and Soluplus® processed by hot melt extrusion. Int J Pharm. 2017;532(1):603–11.CrossRefGoogle Scholar
  27. 27.
    Zhong L, Zhu X, Yu B, Su W. Influence of alkalizers on dissolution properties of telmisartan in solid dispersions prepared by cogrinding. Drug Dev Ind Pharm. 2014;40(12):1660–9.CrossRefGoogle Scholar
  28. 28.
    Dukeck R, Sieger P, Karmwar P. Investigation and correlation of physical stability, dissolution behaviour and interaction parameter of amorphous solid dispersions of telmisartan: a drug development perspective. Eur J Pharm Sci. 2013;49(4):723–31.CrossRefGoogle Scholar
  29. 29.
    Singh G, Sharma S, Gupta GD. Extensive diminution of particle size and amorphization of a crystalline drug attained by eminent technology of solid dispersion: a comparative study. AAPS PharmSciTech. 2017;18(5):1770–84.CrossRefGoogle Scholar
  30. 30.
    Borba PAA, Pinotti M, de Campos CEM, Pezzini BR, Stulzer HK. Sodium alginate as a potential carrier in solid dispersion formulations to enhance dissolution rate and apparent water solubility of BCS II drugs. Carbohydr Polym. 2016;137:350–9.CrossRefGoogle Scholar
  31. 31.
    Enose AA, Dasan P, Sivaramakrishanan H, Kakkar V. Formulation, characterization and pharmacokinetic evaluation of telmisartan solid dispersions. J Mol Pharm Org Process Res. 2016;4(1):1–8.CrossRefGoogle Scholar
  32. 32.
    Das S, Vegesna NSKV. H. G S. Design and development of a dual-drug loaded pulsatile capsule for treatment of hypertension – in vitro and ex vivo studies. RSC Adv. 2015;5(122):100424–33.CrossRefGoogle Scholar
  33. 33.
    Higuchi T, Connors K. Phase-solubility techniques. Adv Anal Chem Instrum. 1965;4:117–23.Google Scholar
  34. 34.
    Venkateskumar K, Parasuraman S, Gunasunderi R, Sureshkumar K, Nayak MM, Shah SAA, et al. Acyclovir-polyethylene glycol 6000 binary dispersions: mechanistic insights. AAPS PharmSciTech. 2017;18(6):2085–94.CrossRefGoogle Scholar
  35. 35.
    Panda T, Das D, Panigrahi L. Formulation development of solid dispersions of bosentan using gelucire 50/13 and poloxamer 188. J Appl Pharm Sci. 2016;6(9):027–33.CrossRefGoogle Scholar
  36. 36.
    Chen J, Chen Y, Huang W, Wang H, Du Y, Xiong S. Bottom-up and top-down approaches to explore sodium dodecyl sulfate and Soluplus on the crystallization inhibition and dissolution of felodipine extrudates. J Pharm Sci. 2018;107(9):2366–76.CrossRefGoogle Scholar
  37. 37.
    Chae JS, Chae BR, Shin DJ, Goo YT, Lee ES, Yoon HY, et al. Tablet formulation of a polymeric solid dispersion containing amorphous alkalinized telmisartan. AAPS PharmSciTech. 2018;19(7):2990–9.CrossRefGoogle Scholar
  38. 38.
    Patel DD, Anderson BD. Adsorption of polyvinylpyrrolidone and its impact on maintenance of aqueous supersaturation of indomethacin via crystal growth inhibition. J Pharm Sci. 2015;104(9):2923–33.CrossRefGoogle Scholar
  39. 39.
    Patel DD, Anderson BD. Effect of precipitation inhibitors on indomethacin supersaturation maintenance: mechanisms and modeling. Mol Pharm. 2014;11(5):1489–99.CrossRefGoogle Scholar
  40. 40.
    Tran PH, Tran HT, Lee BJ. Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release. J Control Release. 2008;129(1):59–65.CrossRefGoogle Scholar
  41. 41.
    Frank DS, Matzger AJ. Probing the interplay between amorphous solid dispersion stability and polymer functionality. Mol Pharm. 2018;15(7):2714–20.CrossRefGoogle Scholar
  42. 42.
    Aso Y, Yoshioka S, Kojima S. Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly (vinylpyrrolidone) solid dispersions. J Pharm Sci. 2004;93(2):384–91.CrossRefGoogle Scholar
  43. 43.
    Gordon M, Taylor JS. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J Appl Chem. 1952;2:493–500.CrossRefGoogle Scholar
  44. 44.
    Brostow W, Chiu R, Kalogeras IM, Vassilikou-Dova A. Prediction of glass transition temperatures: binary blends and copolymers. Mater Lett. 2008;62(17–18):3152–5.CrossRefGoogle Scholar
  45. 45.
    Moura Ramos JJ, Diogo HP. Thermal behavior and molecular mobility in the glassy state of three anti-hypertensive pharmaceutical ingredients. RSC Adv. 2017;7(18):10831–40.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Xiangjun Shi
    • 1
    Email author
  • Tiantian Xu
    • 1
  • Wan Huang
    • 1
  • Baibai Fan
    • 1
  • Xiaoxia Sheng
    • 2
  1. 1.Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of TechnologyHangzhouPeople’s Republic of China
  2. 2.Soli Pharma Sci-Tech Co., LtdHangzhouPeople’s Republic of China

Personalised recommendations