Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm. 2004;57(1):1–8. https://doi.org/10.1016/S0939-6411(03)00155-3.
CAS
Article
PubMed
Google Scholar
Jesus S, Soares E, Borchard G, Borges O. Poly-ϵ-caprolactone/chitosan nanoparticles provide strong adjuvant effect for hepatitis B antigen. Nanomedicine. 2017;12(19):2335–48.
CAS
Article
PubMed
Google Scholar
Park J, Kim WJ. Current status of gene delivery: spotlight on nanomaterial-polymer hybrids. J Drug Target. 2012;20(8):648–66. https://doi.org/10.3109/1061186X.2012.704634.
CAS
Article
PubMed
Google Scholar
Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci. 2013;14(1):1629–54. https://doi.org/10.3390/ijms14011629.
CAS
Article
PubMed
PubMed Central
Google Scholar
Garaiova Z, Strand SP, Reitan NK, Lelu S, Storset SO, Berg K, et al. Cellular uptake of DNA-chitosan nanoparticles: the role of clathrin- and caveolae-mediated pathways. Int J Biol Macromol. 2012;51(5):1043–51.
CAS
Article
PubMed
Google Scholar
Lebre F, Borchard G, Faneca H, De Lima MCP, Borges O. Intranasal administration of novel chitosan nanoparticle/DNA complexes induces antibody response to hepatitis B surface antigen in mice. Mol Pharm. 2016;13(2):472–82.
CAS
Article
PubMed
Google Scholar
Thomas M, Klibanov AM. Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biotechnol. 2003;62(1):27–34. https://doi.org/10.1007/s00253-003-1321-8.
CAS
Article
PubMed
Google Scholar
Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials. 2008;29(24–25):3477–96.
CAS
Article
PubMed
Google Scholar
Kay MA. State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet. 2011;12(5):316–28. https://doi.org/10.1038/nrg2971.
CAS
Article
PubMed
Google Scholar
Paiva D, Ivanova G, Pereira MD, Rocha S. Chitosan conjugates for DNA delivery. Phys Chem Chem Phys. 2013;15:11893–9. https://doi.org/10.1039/c3cp51215k.
CAS
Article
PubMed
Google Scholar
Baldrick P. The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol. 2010;56(3):290–9. https://doi.org/10.1016/j.yrtph.2009.09.015.
CAS
Article
PubMed
Google Scholar
Duceppe N, Tabrizian M. Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv. 2010;7(10):1191–207.
CAS
Article
PubMed
Google Scholar
Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J Control Release. 2003;89(2):151–65. https://doi.org/10.1016/S0168-3659(03)00126-3.
CAS
Article
PubMed
Google Scholar
Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100(1):5–28. https://doi.org/10.1016/j.jconrel.2004.08.010.
CAS
Article
PubMed
Google Scholar
Borges O, Borchard G, de Sousa A, Junginger HE, Cordeiro-da-Silva A. Induction of lymphocytes activated marker CD69 following exposure to chitosan and alginate biopolymers. Int J Pharm. 2007;337(1–2):254–64.
CAS
Article
PubMed
Google Scholar
Anal AK, Tobiassen A, Flanagan J, Singh H. Preparation and characterization of nanoparticles formed by chitosan-caseinate interactions. Colloids Surf B Biointerfaces. 2008;64(1):104–10. https://doi.org/10.1016/j.colsurfb.2008.01.010.
CAS
Article
PubMed
Google Scholar
Lebre F, Bento D, Jesus S, Borges O. Chitosan-based nanoparticles as a hepatitis B antigen delivery system. In: Methods in Enzymology, vol. 509. 1st ed. Amsterdam: Elsevier Inc; 2012. p. 127–42.
Google Scholar
Mao HQ, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release. 2001;70(3):399–421. https://doi.org/10.1016/S0168-3659(00)00361-8.
CAS
Article
PubMed
Google Scholar
Gao Y, Xu Z, Chen S, Gu W, Chen L, Li Y. Arginine-chitosan/DNA self-assemble nanoparticles for gene delivery: in vitro characteristics and transfection efficiency. Int J Pharm. 2008;359(1–2):241–6.
CAS
Article
PubMed
Google Scholar
Elzoghby AO, Abo El-Fotoh WS, Elgindy NA. Casein-based formulations as promising controlled release drug delivery systems. J Control Release. 2011;153(3):206–16. https://doi.org/10.1016/j.jconrel.2011.02.010.
CAS
Article
PubMed
Google Scholar
Elzoghby AO, Samy WM, Elgindy NA. Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release. 2012;161(1):38–49. https://doi.org/10.1016/j.jconrel.2012.04.036.
CAS
Article
PubMed
Google Scholar
Soto ER, O’Connell O, Dikengil F, Peters PJ, Clapham PR, Ostroff GR. Targeted delivery of glucan particle encapsulated gallium nanoparticles inhibits HIV growth in human macrophages. J Drug Deliv. 2016;2016(8520629):1–8.
Article
Google Scholar
Soto ER, Caras AC, Kut LC, Castle MK, Ostroff GR. Glucan particles for macrophage targeted delivery of nanoparticles. J Drug Deliv. 2012;2012:1–13. https://doi.org/10.1155/2012/143524.
CAS
Article
Google Scholar
Tesz GJ, Aouadi M, Prot M, Nicoloro SM, Boutet E, Amano SU, et al. Glucan particles for selective delivery of siRNA to phagocytic cells in mice. Biochem J. 2011;436(2):351–62. https://doi.org/10.1042/BJ20110352.
CAS
Article
PubMed
Google Scholar
Mendelovits A, Prat T, Gonen Y, Rytwoa G. Improved colorimetric determination of chitosan concentrations by dye binding. Appl Spectrosc. 2012;66(8):979–82. https://doi.org/10.1366/12-06591a.
CAS
Article
PubMed
Google Scholar
Wischke C, Borchert HH. Increased sensitivity of chitosan determination by a dye binding method. Carbohydr Res. 2006;341(18):2978–9. https://doi.org/10.1016/j.carres.2006.10.012.
CAS
Article
PubMed
Google Scholar
Muzzarelli RA. Colorimetric determination of chitosan. Anal Biochem. 1998;260(2):255–7. https://doi.org/10.1006/abio.1998.2705.
CAS
Article
PubMed
Google Scholar
Cordeiro RA, Santo D, Farinha D, Serra A, Faneca H, Coelho JFJ. High transfection efficiency promoted by tailor-made cationic tri-block copolymer-based nanoparticles. Acta Biomater. 2017;47:113–23. https://doi.org/10.1016/j.actbio.2016.10.015.
CAS
Article
PubMed
Google Scholar
Jesus S, Borchard G, Borges O. Freeze dried chitosan/poly-ε-caprolactone and poly-ε-caprolactone nanoparticles: evaluation of their potential as DNA and antigen delivery systems. J Genet Syndr Gene Ther. 2013;4(7):1–11.
Google Scholar
Nasti A, Zaki NM, De Leonardis P, Ungphaiboon S, Sansongsak P, Rimoli MG, et al. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation. Pharm Res. 2009;26(8):1918–30. https://doi.org/10.1007/s11095-009-9908-0.
CAS
Article
PubMed
Google Scholar
Fernández-Urrusuno R, Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res. 1999;16:1576–81. https://doi.org/10.1023/A:1018908705446.
Article
PubMed
Google Scholar
Senior J, Trimble K, Maskiewicz R. Interaction of positively-charged liposomes with blood: implications for their application in vivo. BBA - Biomembr. 1991;1070(1):173–9.
CAS
Article
Google Scholar
Sarah P, Clarke, B. Development of hierarchical magnetic nanocomposite materials for biomedical applications thesis submitted for the degree of doctor of Philosophy. 2013, DOI: https://doi.org/10.1080/14789949.2013.862292.
Strand SP, Lelu S, Reitan NK, de Lange Davies C, Artursson P, Vårum KM. Molecular design of chitosan gene delivery systems with an optimized balance between polyplex stability and polyplex unpacking. Biomaterials. 2010;31(5):975–87. https://doi.org/10.1016/j.biomaterials.2009.09.102.
CAS
Article
PubMed
Google Scholar