Skip to main content
Log in

Enhanced Transdermal Drug Delivery by Sonophoresis and Simultaneous Application of Sonophoresis and Iontophoresis

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Transdermal drug delivery has advantages of topical drug administration compared to the other conventional administration methods. However, the skin penetration of drugs is limited by the barrier properties of stratum corneum. The combinational strategy has been investigated to improve the skin permeability of the drug. For this study, we devised an improved device that can perform not only the single application of sonophoresis or iontophoresis but also the simultaneous application. The enhancement effect of sonophoresis was evaluated for various cosmeceutical drugs using a Franz diffusion cell. The enhancement ratio of niacinamide and retinol with sonophoresis was increased to 402% and 292%, respectively. The relationship was found between the enhancement effect of sonophoresis and the physicochemical properties of drugs. In particular, the simultaneous treatment of sonophoresis and iontophoresis enhanced skin penetration of glutamic acid to 240% using the fabricated device. The simultaneous application showed significantly higher enhancement ratio than application of sonophoresis or iontophoresis alone. Moreover, the improved device achieved skin penetration enhancement of various cosmeceutical drugs with lower intensity and a short application time. This combined strategy of transdermal physical enhancement methods is advantageous in terms of decline in energy density, thereby reducing the skin irritation. The miniaturized device with sonophoresis and iontophoresis is a promising approach due to enhanced transdermal drug delivery and feasibility of self-administration in cosmetic and therapeutic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lavon I, Kost J. Ultrasound and transdermal drug delivery. Drug Discov Today. 2004;9:670–6.

    Article  CAS  Google Scholar 

  2. Escobar-Chavez JJ, Merino-Sanjuán V, López-Cervantes M, Urban-Morlan Z, Pinon-Segundo E, Quintanar-Guerrero D, et al. The tape-stripping technique as a method for drug quantification in skin. J Pharm Pharm Sci. 2008;11:104–30.

    Article  CAS  Google Scholar 

  3. Potts RO, Francoeur ML. The influence of stratum corneum morphology on water permeability. J Investig Dermatol. 1991;96:495–9.

    Article  CAS  Google Scholar 

  4. Rejinold NS, Shin J-H, Seok HY, Kim Y-C. Biomedical applications of microneedles in therapeutics: recent advancements and implications in drug delivery. Expert Opin Drug Deliv. 2016;13:109–31.

    Article  CAS  Google Scholar 

  5. Amjadi M, Mostaghaci B, Sitti M. Recent advances in skin penetration enhancers for transdermal gene and drug delivery. Curr Gene Ther. 2017;17:139–46.

    Article  CAS  Google Scholar 

  6. Ain A, Karande P, Mitragotri S. Percutaneous penetration enhancers drug penetration into/through the skin, Chapter 8, High throughput screening of transdermal penetration enhancers: opportunities, methods, and applications. New York: Springer; 2017. p. 137–49.

    Google Scholar 

  7. Lee H, Park J, Kim Y-C. Enhanced transdermal delivery with less irritation by magainin pore-forming peptide with a N-lauroylsarcosine and sorbitan monolaurate mixture. Drug Deliv Transl Res. 2018;8:54–63.

    Article  CAS  Google Scholar 

  8. Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3:115–24.

    Article  CAS  Google Scholar 

  9. Kim Y-C, Late S, Banga AK, Ludovice PJ, Prausnitz MR. Biochemical enhancement of transdermal delivery with magainin peptide: modification of electrostatic interactions by changing pH. Int J Pharm. 2008;362:20–8.

    Article  CAS  Google Scholar 

  10. Kang S-M, Song J-M, Kim Y-C. Microneedle and mucosal delivery of influenza vaccines. Expert Rev Vaccines. 2012;11:547–60.

    Article  CAS  Google Scholar 

  11. Bommannan D, Okuyama H, Stauffer P, Guy RH. Sonophoresis. I. The use of high-frequency ultrasound to enhance transdermal drug delivery. Pharm Res-Dordr. 1992;9:559–64.

    Article  CAS  Google Scholar 

  12. Mitragotri S, Kost J. Low-frequency sonophoresis: a review. Adv Drug Deliv Rev. 2004;56:589–601.

    Article  CAS  Google Scholar 

  13. Ogura M, Paliwal S, Mitragotri S. Low-frequency sonophoresis: current status and future prospects. Adv Drug Deliv Rev. 2008;60:1218–23.

    Article  CAS  Google Scholar 

  14. Hikima T, Tojo K. Percutaneous penetration enhancers: physical methods in penetration enhancement, Chapter 11, Combined Use of Iontophoresis and Other Physical Methods. New York: Springer; 2017. p. 353–67.

    Book  Google Scholar 

  15. Tezel A, Sens A, Tuchscherer J, Mitragotri S. Frequency dependence of sonophoresis. Pharm Res-Dordr. 2001;18:1694–700.

    Article  CAS  Google Scholar 

  16. Azagury A, Khoury L, Enden G, Kost J. Ultrasound mediated transdermal drug delivery. Adv Drug Deliv Rev. 2014;72:127–43.

    Article  CAS  Google Scholar 

  17. Singh P, Maibach HI. Iontophoresis in drug delivery: basic principles and applications. Crit Rev Ther Drug. 1994;11:161–213.

    CAS  Google Scholar 

  18. Anderson CR, Morris RL, Boeh SD, Panus PC, Sembrowich WL. Effects of iontophoresis current magnitude and duration on dexamethasone deposition and localized drug retention. Phys Ther. 2003;83:161–70.

    Article  Google Scholar 

  19. Sieg A, Wascotte V. Diagnostic and therapeutic applications of iontophoresis. J Drug Target. 2009;17:690–700.

    Article  CAS  Google Scholar 

  20. Ita K. Transdermal iontophoretic drug delivery: advances and challenges. J Drug Target. 2016;24:386–91.

    Article  CAS  Google Scholar 

  21. Mitragotri. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov. 2005;4:255–60.

    Article  CAS  Google Scholar 

  22. Singhal M, Kalia YN. Skin permeation and disposition of therapeutic and cosmeceutical compounds, Iontophoresis and Electroporation. Tokyo: Springer Japan; 2017. p. 165–82.

    Book  Google Scholar 

  23. Shirouzu K, Nishiyama T, Hikima T, Tojo K. Synergistic effect of sonophoresis and iontophoresis in transdermal drug delivery. JCEJ. 2008;41:300–5.

    Article  CAS  Google Scholar 

  24. Le L, Kost J, Mitragotri S. Combined effect of low-frequency ultrasound and iontophoresis: applications for transdermal heparin delivery. Pharm Res-Dordr. 2000;17:1151–4.

    Article  CAS  Google Scholar 

  25. Hikima T, Ohsumi S, Shirouzu K, Tojo K. Mechanisms of synergistic skin penetration by sonophoresis and iontophoresis. Biol Pharm Bull. 2009;32:905–9.

    Article  CAS  Google Scholar 

  26. Fang J-Y, Hwang T-L, Huang Y-B, Tsai Y-H. Transdermal iontophoresis of sodium nonivamide acetate: V. Combined effect of physical enhancement methods. Int J Pharm. 2002;235:95–105.

    Article  CAS  Google Scholar 

  27. Mahl JA, Vogel BE, Court M, Kolopp M, Roman D, Nogués V. The minipig in dermatotoxicology: methods and challenges. Exp Toxicol Pathol. 2006;57:341–5.

    Article  Google Scholar 

  28. Yoshimatsu H, Ishii K, Konno Y, Satsukawa M, SJIjop Y. Prediction of human percutaneous absorption from in vitro and in vivo animal experiments. Int J Pharm. 2017;534:348–55.

    Article  CAS  Google Scholar 

  29. Morimoto Y, Mutoh M, Ueda H, Fang L, Hirayama K, Atobe M, et al. Elucidation of the transport pathway in hairless rat skin enhanced by low-frequency sonophoresis based on the solute–water transport relationship and confocal microscopy. J Control Release. 2005;103:587–97.

    Article  CAS  Google Scholar 

  30. Bolzinger M-A, Briançon S, Pelletier J, Chevalier Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr Opin Colloid Interface Sci. 2012;17:156–65.

    Article  CAS  Google Scholar 

  31. Terahara T, Mitragotri S, Kost J, Langer R. Dependence of low-frequency sonophoresis on ultrasound parameters; distance of the horn and intensity. Int J Pharm. 2002;235:35–42.

    Article  CAS  Google Scholar 

  32. Watanabe S, Takagi S, Ga K, Yamamoto K, Aoyagi T. Enhanced transdermal drug penetration by the simultaneous application of iontophoresis and sonophoresis. J Drug Deliv. 2009;19:185–9.

    CAS  Google Scholar 

Download references

Funding

This work was supported financially by the Ministry of Science and ICT (Project No. NRF-2014M3A9E4064580), LG Electronics Inc., and the Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea (N04130146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeu-Chun Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 1032 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Lee, H., Lim, GS. et al. Enhanced Transdermal Drug Delivery by Sonophoresis and Simultaneous Application of Sonophoresis and Iontophoresis. AAPS PharmSciTech 20, 96 (2019). https://doi.org/10.1208/s12249-019-1309-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1309-z

KEY WORDS

Navigation