Skip to main content

Advertisement

Log in

Development of MART for the Rapid Production of Nanostructured Lipid Carriers Loaded with All-Trans Retinoic Acid for Dermal Delivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

All-trans retinoic acid (ATRA) has been regarded as a wonder drug for many dermatological complications; however, its application is limited due to the extreme irritation, and toxicity seen once it has sufficiently concentrated into the bloodstream from the skin. Thus, the present study was aimed to increase the entrapment of ATRA and minimize its transdermal permeation. ATRA incorporated within nanostructured lipid carriers (NLCs) were produced by a green and facile thin lipid-film based microwave-assisted rapid technique (MART). The optimization was carried out using the response surface methodology (RSM)-driven artificial neural network (ANN) coupled with genetic algorithm (GA). The liquid lipid and surfactants were seen to play a very crucial role culminating in the particle size (< 70 nm), zeta potential (< − 32 mV), and entrapment of ATRA (> 98%). ANN-GA-optimized NLCs required a minimal quantity of the surfactants, formed within 2 min and were stable for 1 year at different storage conditions. The optimized NLC-loaded creams showed a skin retention (ex vivo) to an extent of 87.42% with no detectable drug in the receptor fluid (24 h) in comparison to the marketed cream which released 47.32% (12 h) of ATRA. The results were in good correlation with the in vivo skin deposition studies. The NLCs were biocompatible and non-skin irritant based on the primary irritation index. In conclusion, the NLCs were seen to have a very high potential in overcoming the drawbacks of ATRA for dermal delivery and could be produced conveniently by the MART.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother. 2018;103:598–613. https://doi.org/10.1016/j.biopha.2018.04.055.

    Article  CAS  Google Scholar 

  2. Li Q, Cai T, Huang Y, Xia X, Cole SPC, Cai Y. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nanomater (Basel, Switzerland). 2017;7(6). https://doi.org/10.3390/nano7060122.

    Article  Google Scholar 

  3. Courant T, Bayon E, Reynaud-Dougier HL, Villiers C, Menneteau M, Marche PN, et al. Tailoring nanostructured lipid carriers for the delivery of protein antigens: physicochemical properties versus immunogenicity studies. Biomaterials. 2017;136:29–42. https://doi.org/10.1016/j.biomaterials.2017.05.001.

    Article  CAS  PubMed  Google Scholar 

  4. Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54(Suppl 1):S131–55. https://doi.org/10.1016/S0169-409X(02)00118-7.

    Article  Google Scholar 

  5. Gaba B, Fazil M, Khan S, Ali A, Baboota S, Ali J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull Fac Pharmacy, Cairo Univ. 2015;53(2):147–59. https://doi.org/10.1016/j.bfopcu.2015.10.001.

    Article  Google Scholar 

  6. Beg S, Saini S, Bandopadhyay S, Katare OP, Singh B. QbD-driven development and evaluation of nanostructured lipid carriers (NLCs) of olmesartan medoxomil employing multivariate statistical techniques. Drug Dev Ind Pharm. 2018;44(3):407–20. https://doi.org/10.1080/03639045.2017.1395459.

    Article  CAS  PubMed  Google Scholar 

  7. Chanburee S, Tiyaboonchai W. Mucoadhesive nanostructured lipid carriers (NLCs) as potential carriers for improving oral delivery of curcumin. Drug Dev Ind Pharm. 2017;43(3):432–40. https://doi.org/10.1080/03639045.2016.1257020.

    Article  CAS  PubMed  Google Scholar 

  8. Kasongo KW, Müller RH, Walker RB. The use of hot and cold high pressure homogenization to enhance the loading capacity and encapsulation efficiency of nanostructured lipid carriers for the hydrophilic antiretroviral drug, didanosine for potential administration to paediatric patients. Pharm Dev Technol. 2012;17(3):353–62. https://doi.org/10.3109/10837450.2010.542163.

    Article  CAS  PubMed  Google Scholar 

  9. Bhagurkar AM, Repka MA, Murthy SN. A novel approach for the development of a nanostructured lipid carrier formulation by hot-melt extrusion technology. J Pharm Sci. 2017;106(4):1085–91. https://doi.org/10.1016/J.XPHS.2016.12.015.

    Article  CAS  PubMed  Google Scholar 

  10. Patil H, Tiwari RV, Repka MA. Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS PharmSciTech. 2016;17(1):20–42. https://doi.org/10.1208/s12249-015-0360-7.

    Article  CAS  PubMed  Google Scholar 

  11. Shah RM, Bryant G, Taylor M, Eldridge DS, Palombo EA, Harding IH. Structure of solid lipid nanoparticles produced by a microwave-assisted microemulsion technique. RSC Adv. 2016;6(43):36803–10. https://doi.org/10.1039/C6RA02020H.

    Article  CAS  Google Scholar 

  12. Cavalcanti SMT, Nunes C, Costa Lima SA, Soares-Sobrinho JL, Reis S. Optimization of nanostructured lipid carriers for zidovudine delivery using a microwave-assisted production method. Eur J Pharm Sci. 2018;122:22–30. https://doi.org/10.1016/J.EJPS.2018.06.017.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. In: Methods in molecular biology (Clifton, NJ); 2017. p. 17–22. https://doi.org/10.1007/978-1-4939-6591-5_2.

    Chapter  Google Scholar 

  14. Verma DD, Verma S, Blume G, Fahr A. Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm. 2003;258(1–2):141–51. https://doi.org/10.1016/S0378-5173(03)00183-2.

    Article  CAS  Google Scholar 

  15. Vakilinezhad MA, Tanha S, Montaseri H, Dinarvand R, Azadi A, Akbari Javar H. Application of response surface method for preparation, optimization, and characterization of nicotinamide loaded solid lipid nanoparticles. Adv Pharm Bull. 2018;8(2):245–56. https://doi.org/10.15171/apb.2018.029.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Samson S, Basri M, Fard Masoumi HR, Abdul Malek E, Abedi Karjiban R. An artificial neural network based analysis of factors controlling particle size in a virgin coconut oil-based nanoemulsion system containing copper peptide. Mukherjee A, editor. PLoS One. 2016;11(7):e0157737. https://doi.org/10.1371/journal.pone.0157737.

    Article  Google Scholar 

  17. Ghaheri A, Shoar S, Naderan M, Hoseini SS. The applications of genetic algorithms in medicine. Oman Med J. 2015;30(6):406–16. https://doi.org/10.5001/omj.2015.82.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sha W, Edwards KL. The use of artificial neural networks in materials science based research. Mater Des. 2007;28(6):1747–52. https://doi.org/10.1016/J.MATDES.2007.02.009.

    Article  CAS  Google Scholar 

  19. Leyden J, Stein-Gold L, Weiss J. Why topical retinoids are mainstay of therapy for acne. Dermatol Ther (Heidelb). 2017;7(3):293–304. https://doi.org/10.1007/s13555-017-0185-2.

    Article  Google Scholar 

  20. Ghate VM, Lewis SA, Prabhu P, Dubey A, Patel N. Nanostructured lipid carriers for the topical delivery of tretinoin. Eur J Pharm Biopharm. 2016;108:253–61. https://doi.org/10.1016/j.ejpb.2016.07.026.

    Article  CAS  PubMed  Google Scholar 

  21. Yamaguchi Y, Nagasawa T, Nakamura N, Takenaga M, Mizoguchi M, Kawai S, et al. Successful treatment of photo-damaged skin of nano-scale atRA particles using a novel transdermal delivery. J Control Release. 2005;104(1):29–40. https://doi.org/10.1016/j.jconrel.2004.11.036.

    Article  CAS  PubMed  Google Scholar 

  22. Castleberry SA, Quadir MA, Sharkh MA, Shopsowitz KE, Hammond PT. Polymer conjugated retinoids for controlled transdermal delivery. J Control Release. 2017;262:1–9. https://doi.org/10.1016/j.jconrel.2017.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shah K, Date A, Joshi M, Patravale V. Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int J Pharm. 2007;345(1–2):163–71. https://doi.org/10.1016/j.ijpharm.2007.05.061.

    Article  CAS  PubMed  Google Scholar 

  24. Lapteva M, Möller M, Gurny R, Kalia YN. Self-assembled polymeric nanocarriers for the targeted delivery of retinoic acid to the hair follicle. Nanoscale. 2015;7(44):18651–62. https://doi.org/10.1039/C5NR04770F.

    Article  CAS  PubMed  Google Scholar 

  25. Kircik LH. Microsphere technology: hype or help? J Clin Aesthet Dermatol. 2011;4(5):27–31.

    PubMed  PubMed Central  Google Scholar 

  26. Raza K, Singh B, Lohan S, Sharma G, Negi P, Yachha Y, et al. Nano-lipoidal carriers of tretinoin with enhanced percutaneous absorption, photostability, biocompatibility and anti-psoriatic activity. Int J Pharm. 2013;456(1):65–72. https://doi.org/10.1016/j.ijpharm.2013.08.019.

    Article  CAS  PubMed  Google Scholar 

  27. Sureka S, Gupta G, Agarwal M, Mishra A, K. Singh S, P. Singh R, et al. Formulation, in-vitro and ex-vivo evaluation of tretinoin loaded cubosomal gel for the treatment of acne. Recent Pat Drug Deliv Formul 2018;12(2):121–129. https://doi.org/10.2174/1872211312666180213121117.

    Article  CAS  Google Scholar 

  28. Rahman SA, Abdelmalak NS, Badawi A, Elbayoumy T, Sabry N, Ramly A El. Formulation of tretinoin-loaded topical proniosomes for treatment of acne: in-vitro characterization, skin irritation test and comparative clinical study. Drug Deliv 2015;22(6):731–739. https://doi.org/10.3109/10717544.2014.896428.

    Article  Google Scholar 

  29. Shetty PK, Venuvanka V, Jagani HV, Chethan GH, Ligade VS, Musmade PB, et al. Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity. Int J Nanomedicine. 2015;10:6477–91. https://doi.org/10.2147/IJN.S90964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shah NV, Seth AK, Balaraman R, Aundhia CJ, Maheshwari RA, Parmar GR. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: design and in vivo study. J Adv Res. 2016;7(3):423–34. https://doi.org/10.1016/j.jare.2016.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Monteiro LM, Löbenberg R, Cotrim PC, Barros de Araujo GL, Bou-Chacra N. Buparvaquone nanostructured lipid carrier: development of an affordable delivery system for the treatment of leishmaniases. Biomed Res Int. 2017;2017:1–11. https://doi.org/10.1155/2017/9781603.

    Article  CAS  Google Scholar 

  32. Dhanarajan G, Rangarajan V, Bandi C, Dixit A, Das S, Ale K, et al. Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique. J Biotechnol. 2017;256:46–56. https://doi.org/10.1016/j.jbiotec.2017.05.007.

    Article  CAS  PubMed  Google Scholar 

  33. Baskar G, Renganathan S. Optimization of L-asparaginase production by Aspergillus terreus MTCC 1782 using response surface methodology and artificial neural network-linked genetic algorithm. Asia-Pacific J Chem Eng. 2012;7(2):212–20. https://doi.org/10.1002/apj.520.

    Article  CAS  Google Scholar 

  34. Kodoth AK, Ghate VM, Lewis SA, Badalamoole V. Application of pectin-zinc oxide hybrid nanocomposite in the delivery of a hydrophilic drug and a study of its isotherm, kinetics and release mechanism. Int J Biol Macromol. 2018;115:418–30. https://doi.org/10.1016/j.ijbiomac.2018.04.069.

    Article  CAS  PubMed  Google Scholar 

  35. Guo T, Zhang Y, Zhao J, Zhu C, Feng N. Nanostructured lipid carriers for percutaneous administration of alkaloids isolated from Aconitum sinomontanum. J Nanobiotechnol. 2015;13:47. https://doi.org/10.1186/s12951-015-0107-3.

    Article  CAS  Google Scholar 

  36. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71. https://doi.org/10.1208/s12248-010-9185-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alam S, Aslam M, Khan A, Imam SS, Aqil M, Sultana Y, et al. Nanostructured lipid carriers of pioglitazone for transdermal application: from experimental design to bioactivity detail. Drug Deliv. 2016;23(2):601–9. https://doi.org/10.3109/10717544.2014.923958.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao J, Piao X, Shi X, Si A, Zhang Y, Feng N. Podophyllotoxin-loaded nanostructured lipid carriers for skin targeting: in vitro and in vivo studies. Molecules. 2016;21(11):1549. https://doi.org/10.3390/molecules21111549.

    Article  CAS  PubMed Central  Google Scholar 

  39. Chen Y, Zhou L, Yuan L, Zhang Z, Liu X, Wu Q. Formulation, characterization, and evaluation of in vitro skin permeation and in vivo pharmacodynamics of surface-charged tripterine-loaded nanostructured lipid carriers. Int J Nanomedicine. 2012;7:3023–32. https://doi.org/10.2147/IJN.S32476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Banerjee S, Chattopadhyay P, Ghosh A, Pathak MP, Singh S, Veer V. Acute dermal irritation, sensitization, and acute toxicity studies of a transdermal patch for prophylaxis against (±) anatoxin-A poisoning. Int J Toxicol. 2013;32(4):308–13. https://doi.org/10.1177/1091581813489996.

    Article  CAS  PubMed  Google Scholar 

  41. Wang J, Li Z, Sun F, Tang S, Zhang S, Lv P, et al. Evaluation of dermal irritation and skin sensitization due to vitacoxib. Toxicol Rep. 2017;4:287–90. https://doi.org/10.1016/j.toxrep.2017.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Simonsen L, Petersen MB, Groth L. In vivo skin penetration of salicylic compounds in hairless rats. Eur J Pharm Sci. 2002;17(1–2):95–104. https://doi.org/10.1016/S0928-0987(02)00147-1.

    Article  CAS  Google Scholar 

  43. Mohammed D, Matts PJ, Hadgraft J, Lane ME. In vitro–in vivo correlation in skin permeation. Pharm Res. 2014;31(2):394–400. https://doi.org/10.1007/s11095-013-1169-2.

    Article  CAS  PubMed  Google Scholar 

  44. Sinico C, Manconi M, Peppi M, Lai F, Valenti D, Fadda AM. Liposomes as carriers for dermal delivery of tretinoin: in vitro evaluation of drug permeation and vesicle–skin interaction. J Control Release. 2005;103(1):123–36. https://doi.org/10.1016/J.JCONREL.2004.11.020.

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Abbaspour MR, Grootendorst PV, Rauth AM, Wu XY. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology. Eur J Pharm Biopharm. 2015;94:170–9. https://doi.org/10.1016/J.EJPB.2015.04.028.

    Article  CAS  PubMed  Google Scholar 

  46. Metwally AA, Hathout RM. Computer-assisted drug formulation design: novel approach in drug delivery. Mol Pharm. 2015;12(8):2800–10. https://doi.org/10.1021/mp500740d.

    Article  CAS  PubMed  Google Scholar 

  47. Gao Y, Chang M-W, Ahmad Z, Li J-S. Magnetic-responsive microparticles with customized porosity for drug delivery. RSC Adv. 2016;6(91):88157–67. https://doi.org/10.1039/C6RA17162A.

    Article  CAS  Google Scholar 

  48. Abd E, Yousef SA, Pastore MN, Telaprolu K, Mohammed YH, Namjoshi S, et al. Skin models for the testing of transdermal drugs. Clin Pharmacol. 2016;8:163–76. https://doi.org/10.2147/CPAA.S64788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mukherjee S, Date A, Patravale V, Korting HC, Roeder A, Weindl G. Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clin Interv Aging. 2006;1:327–48.

    Article  CAS  Google Scholar 

  50. Veraldi S, Barbareschi M, Benardon S, Schianchi R. Short contact therapy of acne with tretinoin. J Dermatol Treat. 2013;24(5):374–6. https://doi.org/10.3109/09546634.2012.751085.

    Article  CAS  Google Scholar 

  51. Bos JD, Meinardi MMHM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):165–9. https://doi.org/10.1034/j.1600-0625.2000.009003165.x.

    Article  CAS  PubMed  Google Scholar 

  52. Bouwstra JA. The skin barrier, a well-organized membrane. Colloids Surfaces A Physicochem Eng Asp. 1997;123–124:403–13. https://doi.org/10.1016/S0927-7757(96)03819-8.

    Article  Google Scholar 

  53. Hafeez F, Maibach H. Occlusion effect on in vivo percutaneous penetration of chemicals in man and monkey: partition coefficient effects. Skin Pharmacol Physiol. 2013;26(2):85–91. https://doi.org/10.1159/000346273.

    Article  CAS  PubMed  Google Scholar 

  54. Garg A, Singh S. Targeting of eugenol-loaded solid lipid nanoparticles to the epidermal layer of human skin. Nanomedicine (Lond). 2014;9(8):1223–38. https://doi.org/10.2217/nnm.13.33.

    Article  CAS  Google Scholar 

  55. Santos Maia C, Mehnert W, Schaller M, Korting HC, Gysler A, Haberland A, et al. Drug targeting by solid lipid nanoparticles for dermal use. J Drug Target. 2002;10(6):489–95. https://doi.org/10.1080/1061186021000038364.

    Article  CAS  PubMed  Google Scholar 

  56. Freitas C, Müller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int J Pharm. 1998;168(2):221–9. https://doi.org/10.1016/S0378-5173(98)00092-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, for providing financial assistance in the form of Senior Research Fellowship (SRF) to Vivek M. Ghate [File No. 8/602(0003)/18 EMR-1]. The authors are also thankful to Mangalore University, Mangalagangotri, for their support in analyzing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaila A. Lewis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 8406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghate, V.M., Kodoth, A.K., Raja, S. et al. Development of MART for the Rapid Production of Nanostructured Lipid Carriers Loaded with All-Trans Retinoic Acid for Dermal Delivery. AAPS PharmSciTech 20, 162 (2019). https://doi.org/10.1208/s12249-019-1307-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1307-1

KEY WORDS

Navigation