Design, Development, and Characterization of Imiquimod-Loaded Chitosan Films for Topical Delivery

Abstract

Aldara™ (5% w/w imiquimod) topical cream is approved by the US FDA for the treatment of superficial basal cell carcinoma. However, the cream formulation suffers from dose variability, low drug availability due to the incomplete release, and poor patient compliance. To achieve sustained and complete release of imiquimod, chitosan films were prepared by casting using propylene glycol as a plasticizer. Chitosan films had appropriate physicochemical characteristics for wound dressing and excellent content uniformity and maintained the original physical form of imiquimod. Films were capable of releasing a defined dose of imiquimod over a period of 7 days. The bioactivity of imiquimod was not affected by its entrapment in chitosan matrix as indicated by the results of in vitro growth inhibition assay. In addition, the film formulation showed significantly (p ˂ 0.05) higher drug accumulation in the skin when compared to commercial cream formulation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Urosevic M, Dummer R. Immunotherapy for nonmelanoma skin cancer: does it have a future? Cancer. 2002;94(2):477–85. https://doi.org/10.1002/cncr.10178.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Sauder DN. Immunomodulatory and pharmacologic properties of imiquimod. J Am Acad Dermatol. 2000;43(1 Pt 2):S6–11.

    CAS  Article  Google Scholar 

  3. 3.

    Schon MP, Schon M. Imiquimod: mode of action. Br J Dermatol. 2007;157(Suppl 2):8–13. https://doi.org/10.1111/j.1365-2133.2007.08265.x.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Vidal D, Matias-Guiu X, Alomar A. Efficacy of imiquimod for the expression of Bcl-2, Ki67, p53 and basal cell carcinoma apoptosis. Br J Dermatol. 2004;151(3):656–62. https://doi.org/10.1111/j.1365-2133.2004.06094.x.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Bubna AK. Imiquimod—its role in the treatment of cutaneous malignancies. Indian J Pharmacol. 2015;47(4):354–9. https://doi.org/10.4103/0253-7613.161249.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–82. https://doi.org/10.1038/nrd2614.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387–92.

    CAS  PubMed  Google Scholar 

  8. 8.

    Berman B, Ricotti CA Jr, Cazzaniga A, Davis SC. Determination of the area of skin capable of being covered by the application of 250 mg of 5% imiquimod cream. Dermatol Surg. 2004;30(5):784–6. https://doi.org/10.1111/j.1524-4725.2004.30217.x.

    Article  PubMed  Google Scholar 

  9. 9.

    Kathe K, Kathpalia H. Film forming systems for topical and transdermal drug delivery. Asian J Pharm Sci. 2017;12(6):487–97. https://doi.org/10.1016/j.ajps.2017.07.004.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Donnelly RF, McCarron PA, Zawislak AA, Woolfson AD. Design and physicochemical characterisation of a bioadhesive patch for dose-controlled topical delivery of imiquimod. Int J Pharm. 2006;307(2):318–25. https://doi.org/10.1016/j.ijpharm.2005.10.023.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Lalani R, Misra A, Amrutiya J, Patel H, Bhatt P, Patel V. Challenges in dermal delivery of therapeutic antimicrobial protein and peptides. Curr Drug Metab. 2017;18(5):426–36. https://doi.org/10.2174/1389200218666170222151217.

    Article  PubMed  Google Scholar 

  12. 12.

    Campos M. Chitosan cross-linked films for drug delivery applications. Macromol Symp. 2009;279:169–74.

    CAS  Article  Google Scholar 

  13. 13.

    Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem Rev. 2004;104(12):6017–84. https://doi.org/10.1021/cr030441b.

    Article  Google Scholar 

  14. 14.

    Layek B, Singh J. 8 - Chitosan for DNA and gene therapy A2 - Jennings, J. Amber. In: Bumgardner JD, editor. Chitosan Based Biomaterials Volume 2: Woodhead Publishing; 2017. p. 209–44.

  15. 15.

    Muzzarelli RAA. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym. 2009;76(2):167–82. https://doi.org/10.1016/j.carbpol.2008.11.002.

    CAS  Article  Google Scholar 

  16. 16.

    Pellá MCG, Lima-Tenório MK, Tenório-Neto ET, Guilherme MR, Muniz EC, Rubira AF. Chitosan-based hydrogels: from preparation to biomedical applications. Carbohydr Polym. 2018;196:233–45. https://doi.org/10.1016/j.carbpol.2018.05.033.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31(7):603–32. https://doi.org/10.1016/j.progpolymsci.2006.06.001.

    CAS  Article  Google Scholar 

  18. 18.

    Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):19–34. https://doi.org/10.1016/S0939-6411(03)00161-9.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Peh K, Khan T, Ch’ng H. Mechanical, bioadhesive strength and biological evaluations of chitosan films for wound dressing. J Pharm Pharm Sci. 2000;3(3):303–11.

    CAS  PubMed  Google Scholar 

  20. 20.

    Rhim J-W, Hong S-I, Park H-M, Ng PKW. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem. 2006;54(16):5814–22. https://doi.org/10.1021/jf060658h.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Singh S, Jain S, Muthu MS, Tiwari S, Tilak R. Preparation and evaluation of buccal bioadhesive films containing clotrimazole. AAPS PharmSciTech. 2008;9(2):660–7. https://doi.org/10.1208/s12249-008-9083-3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Córdoba-Díaz M, Nova M, Elorza B, Córdoba-Díaz D, Chantres JR, Córdoba-Borrego M. Validation protocol of an automated in-line flow-through diffusion equipment for in vitro permeation studies. J Control Release. 2000;69(3):357–67. https://doi.org/10.1016/S0168-3659(00)00306-0.

    Article  PubMed  Google Scholar 

  23. 23.

    Layek B, Sadhukha T, Prabha S. Glycoengineered mesenchymal stem cells as an enabling platform for two-step targeting of solid tumors. Biomaterials. 2016;88:97–109. https://doi.org/10.1016/j.biomaterials.2016.02.024.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Sadhukha T, Layek B, Prabha S. Incorporation of lipolysis in monolayer permeability studies of lipid-based oral drug delivery systems. Drug Deliv Transl Res. 2018;8(2):375–86. https://doi.org/10.1007/s13346-017-0383-6.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Chollet JL, Jozwiakowski MJ, Phares KR, Reiter MJ, Roddy PJ, Schultz HJ, et al. Development of a topically active imiquimod formulation. Pharm Dev Technol. 1999;4(1):35–43. https://doi.org/10.1080/10837459908984222.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Preis M, Knop K, Breitkreutz J. Mechanical strength test for orodispersible and buccal films. Int J Pharm. 2014;461(1):22–9. https://doi.org/10.1016/j.ijpharm.2013.11.033.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Sasikala L, Durai B, Rathinamoorthy R. Manuka honey loaded chitosan hydrogel films for wound dressing applications. 2013.

  28. 28.

    Preis M, Woertz C, Kleinebudde P, Breitkreutz J. Oromucosal film preparations: classification and characterization methods. Expert Opin Drug Deliv. 2013;10(9):1303–17. https://doi.org/10.1517/17425247.2013.804058.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Peh KK, Wong CF. Polymeric films as vehicle for buccal delivery: swelling, mechanical, and bioadhesive properties. J Pharm Pharm Sci. 1999;2(2):53–61.

    CAS  PubMed  Google Scholar 

  30. 30.

    Mi F-L, Shyu S-S, Wu Y-B, Lee S-T, Shyong J-Y, Huang R-N. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials. 2001;22(2):165–73. https://doi.org/10.1016/S0142-9612(00)00167-8.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Allegrini P, Razzetti G, Bologna A, Magrone D, Ventimiglia G. A process for the purification of imiquimod. Google Patents; 2007.

  32. 32.

    Chen H, Hu X, Chen E, Wu S, McClements DJ, Liu S, et al. Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocoll. 2016;61:662–71. https://doi.org/10.1016/j.foodhyd.2016.06.034.

    CAS  Article  Google Scholar 

  33. 33.

    Wiedmann TS, Naqwi A. Pharmaceutical salts: theory, use in solid dosage forms and in situ preparation in an aerosol. Asian J Pharm Sci. 2016. https://doi.org/10.1016/j.ajps.2016.07.002.

  34. 34.

    Barnes L. The management of basal cell carcinomas. Ir Med J. 2006;99(6):179–81.

    PubMed  Google Scholar 

  35. 35.

    Szeimies RM, Karrer S, Radakovic-Fijan S, Tanew A, Calzavara-Pinton PG, Zane C, et al. Photodynamic therapy using topical methyl 5-aminolevulinate compared with cryotherapy for actinic keratosis: a prospective, randomized study. J Am Acad Dermatol. 2002;47(2):258–62.

    CAS  Article  Google Scholar 

  36. 36.

    Salasche S, Shumack S. A review of imiquimod 5% cream for the treatment of various dermatological conditions. Clin Exp Dermatol. 2003;28(Suppl 1):1–3.

    Article  Google Scholar 

  37. 37.

    Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm. 2011;77(2):187–99. https://doi.org/10.1016/j.ejpb.2010.11.023.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Kouchak M, Handali S, Naseri Boroujeni B. Evaluation of the mechanical properties and drug permeability of chitosan/Eudragit RL composite film. Osong Public Health Res Perspect. 2015;6(1):14–9. https://doi.org/10.1016/j.phrp.2014.12.001.

    Article  PubMed  Google Scholar 

  39. 39.

    Wei H, Li-Fang F, Bai X, Chun-Lei L, Qing D, Yong-Zhen C, et al. An investigation into the characteristics of chitosan/Kollicoat SR30D free films for colonic drug delivery. Eur J Pharm Biopharm. 2009;72(1):266–74. https://doi.org/10.1016/j.ejpb.2008.10.017.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    S-h H, Whu SW, Tsai C-L, Wu Y-H, Chen H-W, Hsieh K-H. Chitosan as scaffold materials: effects of molecular weight and degree of deacetylation. J Polym Res. 2004;11(2):141–7. https://doi.org/10.1023/B:JPOL.0000031080.70010.0b.

    Article  Google Scholar 

  41. 41.

    Stein P, Gogoll K, Tenzer S, Schild H, Stevanovic S, Langguth P, et al. Efficacy of Imiquimod-based transcutaneous immunization using a nano-dispersed emulsion gel formulation. PLoS One. 2014;9(7):e102664. https://doi.org/10.1371/journal.pone.0102664.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Lemmer HJ, Hamman JH. Paracellular drug absorption enhancement through tight junction modulation. Expert Opin Drug Deliv. 2013;10(1):103–14. https://doi.org/10.1517/17425247.2013.745509.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Kowapradit J, Opanasopit P, Ngawhiranpat T, Apirakaramwong A, Rojanarata T, Ruktanonchai U, et al. Methylated N-(4-N,N-dimethylaminobenzyl) chitosan, a novel chitosan derivative, enhances paracellular permeability across intestinal epithelial cells (Caco-2). AAPS PharmSciTech. 2008;9(4):1143–52. https://doi.org/10.1208/s12249-008-9160-7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Ramineni SK, Dziubla TD, Cunningham LL Jr, Puleo DA. Local delivery of imiquimod in hamsters using mucoadhesive films and their residence time in human patients. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118(6):665–73. https://doi.org/10.1016/j.oooo.2014.08.015.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Hanna Iaizzo and Mamta Kapoor for conducting the preliminary studies. The mechanical tests were performed at the Characterization Facility, University of Minnesota, Minneapolis, MN.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Swayam Prabha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest Editors: Mahavir Bhupal Chougule, Vijaykumar B. Sutariya and Sudip K. Das

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Layek, B., Rahman Nirzhor, S.S., Rathi, S. et al. Design, Development, and Characterization of Imiquimod-Loaded Chitosan Films for Topical Delivery. AAPS PharmSciTech 20, 58 (2019). https://doi.org/10.1208/s12249-018-1288-5

Download citation

Key Words

  • chitosan
  • imiquimod
  • basal cell carcinoma
  • film formulation
  • topical drug delivery