Skip to main content

Advertisement

Log in

Folic Acid-Functionalized Gold Nanorods for Controlled Paclitaxel Delivery: In Vitro Evaluation and Cell Studies

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Short gold nanorods were synthesized (average length 28.08 nm, average aspect ratio 3.54), which were functionalized with folic acid (FA) and 8-mercaptooctanoic acid (MOA) or 11-mercaptoundecanoic acid (MDA) and loaded with paclitaxel (PCT). FA was conjugated to the nanorods in order to render them targetable for cancer cells overexpressing folate receptors whereas MOA or MDA was attached on the nanorods in order to generate extra hydrophobic areas for entrapment of hydrophobic drugs such as PCT in the nanorods and in order to provide free carboxylic groups, which would allow for the conjugation of drug or other biofunctional molecules to the nanorods. The functionalized gold nanorods (GNRs-MOA-FA and GNRs-MDA-FA) did not exhibit any significant degree of aggregation in cell culture medium and blood plasma even after a prolonged incubation period of 7 days, indicating the adequate colloidal stability of the nanorods in these media. The functionalized nanorods exhibited satisfactory entrapment efficiency (around 40%) for PCT and released less than 25% of their PCT content in phosphate buffer pH 7.4 in 48 h. PCT entrapment efficiency was a little higher and PCT release rate a little lower in the GNRs-MOA-FA. Molecular analysis (qPCR) was used to find out that the MDA-MB-231 cancer cell line expresses the folate receptor (FL1R) whereas the MCF-7 cancer cell line does not. The PCT-loaded GNRs-MOA-FA were more cytotoxic than the PCT-loaded GNRs-MOA nanorods against the MDA-MB-231 cells, which probably relates to the higher uptake of the GNRs-MOA-FA nanorods by these cells. The opposite was true in the case of the MCF-7 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Sharma R, Mody N, Agrawal U, Vyas SP. Theranostic nanomedicine; a next generation platform for cancer diagnosis and therapy. Mini-Rev Med Chem. 2017;17(18):1746–57.

    Article  CAS  Google Scholar 

  2. Gobbo OL, Sjaastad K, Radomski MW, Volkov Y, Prina-Mello A. Magnetic nanoparticles in cancer theranostics. Theranostics. 2015;5(11):1249–63.

    Article  CAS  Google Scholar 

  3. Zoppellaro G, Kolokithas-Ntoukas A, Polakova K, Tucek J, Zboril R, Loudos G, et al. Theranostics of epitaxially condensed colloidal nanocrystal clusters, through a soft biomineralization route. Chem Mater. 2014;26:2062–74.

    Article  CAS  Google Scholar 

  4. Reddy VR. Gold nanoparticles: synthesis and applications. Synlett. 2006;2006(11):1791–2. https://doi.org/10.1055/s-2006-944219.

    Article  CAS  Google Scholar 

  5. Li N, Zhao P, Astruc D. Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew Chem Int Ed. 2014;53:1756–89.

    Article  CAS  Google Scholar 

  6. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104:293–346.

    Article  CAS  Google Scholar 

  7. Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60:1307–15.

    Article  CAS  Google Scholar 

  8. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res. 2008;41:1721–30.

    Article  CAS  Google Scholar 

  9. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem. 2010;49(19):3280–94.

    Article  CAS  Google Scholar 

  10. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41(7):2740–79.

    Article  CAS  Google Scholar 

  11. West JL, Halas NJ. Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng. 2003;5:285–92.

    Article  CAS  Google Scholar 

  12. Skrabalak SE, Au L, Li X, Xia Y. Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc. 2007;2(9):2182–90.

    Article  CAS  Google Scholar 

  13. Zhang J, Langille MR, Personick ML, Zhang K, Li S, Mirkin CA. Concave cubic gold nanocrystals with high index facets. J Am Chem Soc. 2010;132(40):14012–4.

    Article  CAS  Google Scholar 

  14. Millstone JE, Park S, Shuford KL, Qin L, Schatz GC, Mirkin CA. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc. 2005;127(15):5312–3.

    Article  CAS  Google Scholar 

  15. Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev. 2012;64:190–9.

    Article  CAS  Google Scholar 

  16. Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107(3):668–77.

    Article  CAS  Google Scholar 

  17. Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci. 2008;23:217–28.

    Article  Google Scholar 

  18. Ren F, Bhana S, Norman DD, Johnson J, Xu L, Baker DL, et al. Gold nanorods carrying paclitaxel for photothermal-chemotherapy of cancer. Bioconjug Chem. 2013;24:376–−386.

    Article  CAS  Google Scholar 

  19. Parida S, Maitib C, Kaushik R, Ipsita D, Parekha PA, Patrac R, et al. Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy. Biochim Biophys Acta Gen Subj. 2017;1861(1A):3039–52.

    Article  CAS  Google Scholar 

  20. Tu T-Y, Yang S-J, Wang C-H, Lee S-Y, Shieh M-J. HSA/PSS coated gold nanorods as thermo-triggered drug delivery vehicles for combined cancer photothermal therapy and chemotherapy, optical methods for tumor treatment and detection: mechanisms and techniques in photodynamic therapy XXVII San Francisco, Proceedings 2018;10476. https://doi.org/10.1117/12.2289273

  21. Sau TK, Murphy CJ. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir. 2004;20(15):6414–20.

    Article  CAS  Google Scholar 

  22. Tas AC. Use of biomineralization media in biomimetic synthesis of hard tissue substitutes. In: McKittrick JM, Narayan R, editors. Advances in bioceramics and biotechnologies II. New York: Wiley; 2014. p. 92.

    Google Scholar 

  23. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application of proliferation and cytotoxicity assay. J Immunol Methods. 1983;65:55–63.

    Article  CAS  Google Scholar 

  24. Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold Nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15:1957–62.

    Article  CAS  Google Scholar 

  25. Liu H, Pierre-Pierre N, Huo Q. Dynamic light scattering for gold nanorod size characterization and study of nanorod–protein interactions. Gold Bull. 2012;45:187–95.

    Article  CAS  Google Scholar 

  26. Yeh Y-C, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale. 2012;4(6):1871–80.

    Article  CAS  Google Scholar 

  27. Murphy CJ, Gole A. Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem Mater. 2004;16:3633–40.

    Article  Google Scholar 

  28. Lankveld DP, Rayavarapu RG, Krystek P, Oomen AG, Verharen HW, van Leeuwen TG, et al. Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats. Nanomedicine (London). 2011;6:339–49.

    Article  CAS  Google Scholar 

  29. Tong X, Wang Z, Sun X, Song J, Jacobson O, Niu G, et al. Size dependent kinetics of gold nanorods in EPR mediated tumor delivery. Theranostics. 2016;6(12):2039–51.

    Article  CAS  Google Scholar 

  30. Zwicke GL, Mansoori GA, Jeffery CJ. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 2012;3:18496. https://doi.org/10.3402/nano.v3i0.18496.

    Article  CAS  Google Scholar 

  31. Busbee BD, Obare SO, Murphy CJ. An improved synthesis of high aspect ratio gold nanorods. Adv Mater. 2003;15:414–6.

    Article  CAS  Google Scholar 

  32. He J, Unser S, Bruzas I, Cary R, Shi Z, Mehra R, et al. The facile removal of CTAB from the surface of gold nanorods. Colloids Surf B: Biointerfaces. 2018;163:140–5.

    Article  CAS  Google Scholar 

  33. Wang CG, Irudayaraj J. Gold nanorod probes detects multiple pathogens. Small. 2008;4:2204–8.

    Article  CAS  Google Scholar 

  34. Huang P, Bao L, Zhang C, Lin J, Luo T, Yang D, et al. Folic acid-conjugated silica-modified gold nanorods for x-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials. 2011;32:9796–809.

    Article  CAS  Google Scholar 

  35. De S, Klajn R. Dissipative self-assembly driven by the consumption of chemical fuels. Adv Mater. 2018;30:1706750. https://doi.org/10.1002/adma.201706750.

    Article  CAS  Google Scholar 

  36. Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm. 2009;71:409–19.

    Article  CAS  Google Scholar 

  37. Bhana S, O’Connor R, Johnson J, Ziebarth JD, Henderson L, Huang X. Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy. J Colloid Interface Sci. 2016;469:8–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Maria Kollia from the Laboratory of Electron Microscopy and Microanalysis at the University of Patras for the TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Avgoustakis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

(DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papaioannou, L., Angelopoulou, A., Hatziantoniou, S. et al. Folic Acid-Functionalized Gold Nanorods for Controlled Paclitaxel Delivery: In Vitro Evaluation and Cell Studies. AAPS PharmSciTech 20, 13 (2019). https://doi.org/10.1208/s12249-018-1226-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-018-1226-6

KEY WORDS

Navigation