Optimization and Characterization of Thymoquinone-Loaded Liposomes with Enhanced Topical Anti-inflammatory Activity

Abstract

Thymoquinone, the major constituent of Nigella sativa oil has been found to have a promising topical anti-inflammatory activity; however, exaggerated heat and photo-sensitivity and lipophilicity prevent the best use of this promising product. The present work aimed to formulate an ideal thymoquinone liposomal system for topical delivery. Different liposomal systems were developed using thin film hydration method by applying different cholesterol molar concentrations, different total lipid molar concentrations, and different drug-to-lipid ratios. Morphological characterization of the prepared formulae was performed using polarized light, scanning electron microscope, and transmission electron microscope. The optimized formula (F12) was selected on the basis of enhanced permeation through the skin and was incorporated into chitosan gel for topical application. The gel formulation was clear with suitable skin permeation and exhibited acceptable rheological properties. Using carrageenan-induced paw edema in rats, the developed chitosan gel (F12) showed significant superior in vivo anti-inflammatory activity over the chitosan gel of the TQ (p < 0.05) and comparable effect to the marketed indomethacin gel. As a conclusion, results revealed the potential of formulating thymoquinone as liposomal formulation in enhancing the anti-inflammatory effect compared to the TQ solution.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Ali B, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res. 2003;17(4):299–305.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Aljabre S. In vitro antifungal activity of thymoqyuinone against Scopulariopsis brevicaulis. Arab J Pharm Sci. 2005;3:27–33.

    Google Scholar 

  3. 3.

    Kundu JK, Liu L, Shin J-W, Surh Y-J. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo. Biochem Biophys Res Commun. 2013;438(4):721–7.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Yousefi M, Barikbin B, Kamalinejad M, Abolhasani E, Ebadi A, Younespour S, et al. Comparison of therapeutic effect of topical Nigella with betamethasone and Eucerin in hand eczema. J Eur Acad Dermatol Venereol. 2013;27(12):1498–504.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Ivankovic S, Stojkovic R, Jukic M, Milos M, Milos M, Jurin M. The antitumor activity of thymoquinone and thymohydroquinone in vitro and in vivo. Exp Oncol. 2006;28(3):220–4.

    CAS  PubMed  Google Scholar 

  6. 6.

    Houghton PJ, Zarka R, de las Heras B, Hoult J. Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med. 1995;61(01):33–6.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    El Gazzar M, El Mezayen R, Marecki JC, Nicolls MR, Canastar A, Dreskin SC. Anti-inflammatory effect of thymoquinone in a mouse model of allergic lung inflammation. Int Immunopharmacol. 2006;6(7):1135–42.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Salmani JMM, Asghar S, Lv H, Zhou J. Aqueous solubility and degradation kinetics of the phytochemical anticancer thymoquinone; probing the effects of solvents, pH and light. Molecules. 2014;19(5):5925–39.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. 9.

    Mezei M, Gulasekharam V. Liposomes-a selective drug delivery system for the topical route of administration I. Lotion dosage form. Life Sci. 1980;26(18):1473–7.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Doppalapudi S, Jain A, Chopra DK, Khan W. Psoralen loaded liposomal nanocarriers for improved skin penetration and efficacy of topical PUVA in psoriasis. Eur J Pharm Sci. 2017;96:515–29.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Dragicevic-Curic N, Gräfe S, Gitter B, Winter S, Fahr A. Surface charged temoporfin-loaded flexible vesicles: in vitro skin penetration studies and stability. Int J Pharm. 2010;384(1–2):100–8.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Agarwal R, Katare O, Vyas S. Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol. Int J Pharm. 2001;228(1):43–52.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Bangham A, Standish MM, Watkins J. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238–IN27.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Bangham A, Standish M, Weissmann G. The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J Mol Biol. 1965;13(1):253–IN28.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Odeh F, Ismail SI, Abu-Dahab R, Mahmoud IS, Al Bawab A. Thymoquinone in liposomes: a study of loading efficiency and biological activity towards breast cancer. Drug Deliv. 2012;19(8):371–7.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Lopez-Pinto J, Gonzalez-Rodriguez M, Rabasco A. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int J Pharm. 2005;298(1):1–12.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    New RC. Preparation of liposomes. In: New RRC, editors. Liposomes, a practical approach. Oxford etc: IRZ press; 1990. p. 33–104.

  18. 18.

    Ruozi B, Tosi G, Forni F, Fresta M, Vandelli MA. Atomic force microscopy and photon correlation spectroscopy: two techniques for rapid characterization of liposomes. Eur J Pharm Sci. 2005;25(1):81–9.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Değim Z, Çelebi N, Alemdaroğlu C, Deveci M, Öztürk S, Özoğul C. Evaluation of chitosan gel containing liposome-loaded epidermal growth factor on burn wound healing. Int Wound J. 2011;8(4):343–54.

    PubMed  Article  Google Scholar 

  20. 20.

    Qiu Y, Gao Y, Hu K, Li F. Enhancement of skin permeation of docetaxel: a novel approach combining microneedle and elastic liposomes. J Control Release. 2008;129(2):144–50.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Erdurmus M, Yagci R, Yilmaz B, Hepsen IF, Turkmen C, Aydin B, et al. Inhibitory effects of topical thymoquinone on corneal neovascularization. Cornea. 2007;26(6):715–9.

    PubMed  Article  Google Scholar 

  22. 22.

    Winter CA, Risley EA, Nuss GW. Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Exp Biol Med. 1962;111(3):544–7.

    CAS  Article  Google Scholar 

  23. 23.

    Adeyemi O, Okpo S, Ogunti O. Analgesic and anti-inflammatory effects of the aqueous extract of leaves of Persea americana Mill (Lauraceae). Fitoterapia. 2002;73(5):375–80.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Morris CJ. Carrageenan-induced paw edema in the rat and mouse. Methods Mol Biol. 2003;225:115–21.

  25. 25.

    Moncada S, Ferreira SH, Vane J. Prostaglandins, aspirin-like drugs and the oedema of inflammation. Nature 246(5430):217–219.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Bowd AD. Animal care courses: helping fulfill the mandate of animal care committees in Canada. J Appl Anim Welf Sci. 1998;1(4):353–60.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Bamgbose S, Noamesi B. Studies on cryptolepine. Planta Med. 1981;41(04):392–6.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Duffy JC, Dearden JC, Rostron C. Design, synthesis and biological testing of a novel series of anti-inflammatory drugs. J Pharm Pharmacol. 2001;53(11):1505–14.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Nežić L, Škrbić R, Dobrić S, Stojiljković MP, Jaćević V, Šatara SS, et al. Simvastatin and indomethacin have similar anti-inflammatory activity in a rat model of acute local inflammation. Basic Clin Pharmacol Toxicol. 2009;104(3):185–91.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Sinko PJ, Singh Y. Martin’s physical pharmacy and pharmaceutical sciences: physical chemical and biopharmaceutical principles in the pharmaceutical sciences. Sixth edition; 2011.

  31. 31.

    Mayer LD, Tai LC, Ko DS, Masin D, Ginsberg RS, Cullis PR, et al. Influence of vesicle size, lipid composition, and drug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice. Cancer Res. 1989;49(21):5922–30.

    CAS  PubMed  Google Scholar 

  32. 32.

    Smola M, Vandamme T, Sokolowski A. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int J Nanomedicine. 2008;3(1):1–19.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Fang J-Y, Hong C-T, Chiu W-T, Wang Y-Y. Effect of liposomes and niosomes on skin permeation of enoxacin. Int J Pharm. 2001;219(1):61–72.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Zucker D, Marcus D, Barenholz Y, Goldblum A. Liposome drugs' loading efficiency: a working model based on loading conditions and drug's physicochemical properties. J Control Release. 2009;139(1):73–80.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Hu L, Tang X, Cui F. Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. J Pharm Pharmacol. 2004;56(12):1527–35.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    McIntosh TJ. The effect of cholesterol on the structure of phosphatidylcholine bilayers. Biochim Biophys Acta Biomembr. 1978;513(1):43–58.

    CAS  Article  Google Scholar 

  37. 37.

    New R. Characterization of liposomes. In: New R, (editor) Liposomes—a practical approach. Oxford: IRL Press; 1990. p. 105–62.

  38. 38.

    Kirby C, Clarke J, Gregoriadis G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J. 1980;186(2):591–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    du Plessis J, Ramachandran C, Weiner N, Müller D. The influence of particle size of liposomes on the deposition of drug into skin. Int J Pharm. 1994;103(3):277–82.

    Article  Google Scholar 

  40. 40.

    Vargha-Butler E, Hurst E. Study of liposomal drug delivery systems 1. Surface characterization of steroid loaded MLV liposomes. Colloids Surf B: Biointerfaces. 1995;3(5):287–95.

    CAS  Article  Google Scholar 

  41. 41.

    Jones MN. The surface properties of phospholipid liposome systems and their characterisation. Adv Colloid Interf Sci. 1995;54:93–128.

    CAS  Article  Google Scholar 

  42. 42.

    Jones MN. Surface properties and interactions of vesicles. Curr Opin Colloid Interface Sci. 1996;1(1):91–100.

    CAS  Article  Google Scholar 

  43. 43.

    Chen D, Xia D, Li X, Zhu Q, Yu H, Zhu C, et al. Comparative study of Pluronic® F127-modified liposomes and chitosan-modified liposomes for mucus penetration and oral absorption of cyclosporine A in rats. Int J Pharm. 2013;449:1):1–9.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Li X, Chen D, Le C, Zhu C, Gan Y, Hovgaard L, et al. Novel mucus-penetrating liposomes as a potential oral drug delivery system: preparation, in vitro characterization, and enhanced cellular uptake. Int J Nanomed. 2011;6(3):151–62.

    Google Scholar 

  45. 45.

    Miyazaki S, Tobiyama T, Takada M, Attwood D. Percutaneous absorption of indomethacin from pluronic F127 gels in rats. J Pharm Pharmacol. 1995;47(6):455–7.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Kyrikou I, Daliani I, Mavromoustakos T, Maswadeh H, Demetzos C, Hatziantoniou S, et al. The modulation of thermal properties of vinblastine by cholesterol in membrane bilayers. Biochim Biophys Acta Biomembr. 2004;1661(1):1–8.

    CAS  Article  Google Scholar 

  47. 47.

    Demetzos C. Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability. J Liposome Res. 2008;18(3):159–73.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Ghaffar KA, Marasini N, Giddam AK, Batzloff MR, Good MF, Skwarczynski M, et al. The role of size in development of mucosal liposome-lipopeptide vaccine candidates against group A Streptococcus. Med Chem. 2017;13(1):22–7.

    CAS  Article  Google Scholar 

  49. 49.

    Orienti I, Luppi B, Zecchi V. Chitosan and its N-carboxyethyl and N-aminoethyl derivatives as vehicles for topical formulations. J Cosmet Sci. 1999;50(5):307–14.

    CAS  Google Scholar 

  50. 50.

    Illum L, Farraj NF, Davis SS. Chitosan as a novel nasal delivery system for peptide drugs. Pharm Res. 1994;11(8):1186–9.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Varshosaz J, Jaffari F, Karimzadeh S. Development of bioadhesive chitosan gels for topical delivery of lidocaine. Sci Pharm. 2006;74(4):209–32.

    CAS  Article  Google Scholar 

  52. 52.

    Paranjothy K. Gels as topical applications. Indian Drugs. 1994;31:224.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Lipoid GmbH company (Germany) for the generous gift of Phospholipon 90H. Also, we are indebted to Dr. Rehab Refaee (Department of Histology, Faculty of Medicine, Minia University) for her contribution concerning the histology of skin observation.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eman Alaaeldin.

Additional information

The scope of this work is to make the best use of TQ as an anti-inflammatory drug via the encapsulation within a suitable liposomal system which enhances the topical permeation of the drug. To the best of our knowledge, topical anti-inflammatory liposomes of TQ have not been designed yet.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mostafa, M., Alaaeldin, E., Aly, U.F. et al. Optimization and Characterization of Thymoquinone-Loaded Liposomes with Enhanced Topical Anti-inflammatory Activity. AAPS PharmSciTech 19, 3490–3500 (2018). https://doi.org/10.1208/s12249-018-1166-1

Download citation

KEY WORDS

  • liposomes
  • thymoquinone
  • skin
  • enhanced drug deposition, enhanced stability