Skip to main content

Advertisement

Log in

Flutamide-Loaded Zein Nanocapsule Hydrogel, a Promising Dermal Delivery System for Pilosebaceous Unit Disorders

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Zein is a naturally occurring corn protein having similarity to skin keratin. Owing to its hydrophobicity and biodegradability, zein nanocarriers are promising drug delivery vehicles for hydrophobic dermatological drugs. In this study, zein-based nanocapsules (ZNCs) were exploited for the first time as dermal delivery carriers for flutamide (FLT), an antiandrogen used for the management of pilosebasceous unit disorders. FLT-loaded ZNC of appropriate particle size and negative surface charge were prepared by nanoprecipitation method. The dermal permeation and skin retention of FLT from ZNCs were studied in comparison to corresponding nanoemulsion (NE) and hydroalcoholic drug solution (HA). ZNCs showed a significantly lower permeation flux compared to NE and HA while increasing the skin retention of FLT. Confocal laser scanning microscopy (CLSM) demonstrated the follicular localization of the fluorescently labeled NCs. The incorporation of NCs in chitosan gel or Carbomer® 934 gel was studied. Carbomer® gel increased the skin retention of FLT compared to chitosan gel. Accordingly, Carbomer® hydrogel embedding FLT-loaded ZNCs is a promising inexpensive, biocompatible dermal delivery nanocarrier for localized therapy of PSU disorders suitable for application on oily skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Williams HC, Dellavalle RP, Garner S. Acne vulgaris. Lancet. 2012;379(9813):361–72.

    Article  PubMed  Google Scholar 

  2. Knutsen-Larson S, Dawson AL, Dunnick CA, Dellavalle RP. Acne vulgaris: pathogenesis, treatment, and needs assessment. Dermatol Clin. 2012;30(1):99–106.

    Article  PubMed  CAS  Google Scholar 

  3. Cash T. The psychosocial consequences of androgenetic alopecia: a review of the research literature. Br J Dermatol. 1999;141:398–405.

    Article  PubMed  CAS  Google Scholar 

  4. Husein-ElAhmed H. Management of acne vulgaris with hormonal therapies in adult female patients. Dermatol Ther. 2015;28(3):166–72.

    Article  PubMed  Google Scholar 

  5. Brufsky A, Fontaine-Rothe P, Berlane K, Rieker P, Jiroutek M, Kaplan I, et al. Finasteride and flutamide as potency-sparing androgen-ablative therapy for advanced adenocarcinoma of the prostate. Urology. 1997;49(6):913–20.

    Article  PubMed  CAS  Google Scholar 

  6. Adalatkhah H, Pourfarzi F, Sadeghi-Bazargani H. Flutamide versus a cyproterone acetate-ethinyl estradiol combination in moderate acne: a pilot randomized clinical trial. Clin Cosmet Investig Dermatol. 2011;4:117–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Paradisi R, Porcu E, Fabbri R, Seracchioli R, Battaglia C, Venturoli S. Prospective cohort study on the effects and tolerability of flutamide in patients with female pattern hair loss. Ann Pharmacother. 2011;45(4):469–75.

    Article  PubMed  CAS  Google Scholar 

  8. Mitri K, Shegokar R, Gohla S, Anselmi C, Müller RH. Lipid nanocarriers for dermal delivery of lutein: preparation, characterization stability and performance. Int J Pharm. 2011;414(1):267–75.

    Article  PubMed  CAS  Google Scholar 

  9. Durán N, Teixeira Z, Marcato PD. Topical application of nanostructures: solid lipid, polymeric and metallic nanoparticles. Nanocosmetics and Nanomedicines: Springer. 2011. p. 69–99.

  10. Zhang Z, Tsai PC, Ramezanli T, Michniak-Kohn BB. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2013;5(3):205–18.

    PubMed  CAS  Google Scholar 

  11. Jain AK, Jain A, Garg NK, Agarwal A, Jain A, Jain SA, et al. Adapalene loaded solid lipid nanoparticles gel: an effective approach for acne treatment. Colloids Surf B: Biointerfaces. 2014;121:222–9.

    Article  PubMed  CAS  Google Scholar 

  12. Sallam MA, Marin Bosca MT. Mechanistic analysis of human skin distribution and follicular targeting of adapalene-loaded biodegradable Nanospheres with an insight into hydrogel matrix influence, in vitro skin irritation, and in vivo tolerability. J Pharm Sci. 2017;106(10):3140–9.

    Article  PubMed  CAS  Google Scholar 

  13. Madheswaran T, Baskaran R, Sundaramoorthy P, Yoo BK. Enhanced skin permeation of 5alpha-reductase inhibitors entrapped into surface-modified liquid crystalline nanoparticles. Arch Pharm Res. 2015;38(4):534–42.

    Article  PubMed  CAS  Google Scholar 

  14. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385(1–2):113–42.

    Article  PubMed  CAS  Google Scholar 

  15. Poletto FS, Beck RC, Guterres SS, Pohlmann AR. Polymeric nanocapsules: concepts and applications. Nanocosmetics and nanomedicines: Springer; 2011. p. 49–68.

  16. Ourique A, Pohlmann A, Guterres S, Beck R. Tretinoin-loaded nanocapsules: preparation, physicochemical characterization, and photostability study. Int J Pharm. 2008;352(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  17. De Brum TL, Fiel LA, Contri RV, Guterres SS, Pohlmann AR. Polymeric nanocapsules and lipid-core nanocapsules have diverse skin penetration. J Nanosci Nanotechnol. 2015;15(1):773–80.

    Article  PubMed  CAS  Google Scholar 

  18. Santos SS, Lorenzoni A, Ferreira LM, Mattiazzi J, Adams AI, Denardi LB, et al. Clotrimazole-loaded Eudragit® RS100 nanocapsules: preparation, characterization and in vitro evaluation of antifungal activity against Candida species. Mater Sci Eng C. 2013;33(3):1389–94.

    Article  CAS  Google Scholar 

  19. Teixeira M, Alonso MJ, Pinto MM, Barbosa CM. Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. Eur J Pharm Biopharm. 2005;59(3):491–500.

    Article  PubMed  CAS  Google Scholar 

  20. Gaber M, Medhat W, Hany M, Saher N, Fang J-Y, Elzoghby A. Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: challenges and outcomes. J Control Release. 2017;254:75–91.

    Article  PubMed  CAS  Google Scholar 

  21. Elzoghby AO, Vranic BZ, Samy WM, Elgindy NA. Swellable floating tablet based on spray-dried casein nanoparticles: near-infrared spectral characterization and floating matrix evaluation. Int J Pharm. 2015;491(1):113–22.

    Article  PubMed  CAS  Google Scholar 

  22. Wang L, Qin G, Geng S, Dai Y, Wang J-Y. Preparation of zein conjugated quantum dots and their in vivo transdermal delivery capacity through nude mouse skin. J Biomed Nanotechnol. 2013;9(3):367–76.

    Article  PubMed  CAS  Google Scholar 

  23. Elzoghby AO, Elgohary MM, Kamel NM. Chapter six-implications of protein-and peptide-based nanoparticles as potential vehicles for anticancer drugs. Adv Protein Chem Struct Biol. 2015;98:169–221.

    Article  PubMed  CAS  Google Scholar 

  24. Muthuselvi L, Dhathathreyan A. Simple coacervates of zein to encapsulate gitoxin. Colloids Surf B: Biointerfaces. 2006;51(1):39–43.

    Article  PubMed  CAS  Google Scholar 

  25. Zhong Q, Tian H, Zivanovic S. Encapsulation of fish oil in solid zein particles by liquid-liquid dispersion. J Food Process Preserv. 2009;33(2):255–70.

    Article  CAS  Google Scholar 

  26. Elzoghby AO, Helmy MW, Samy WM, Elgindy NA. Micellar delivery of flutamide via milk protein nanovehicles enhances its anti-tumor efficacy in androgen-dependent prostate cancer rat model. Pharm Res. 2013;30(10):2654–63.

    Article  PubMed  CAS  Google Scholar 

  27. Venturini CG, Jäger E, Oliveira CP, Bernardi A, Battastini AM, Guterres SS, et al. Formulation of lipid core nanocapsules. Colloids Surf A Physicochem Eng Asp. 2011;375(1):200–8.

    Article  CAS  Google Scholar 

  28. Sallam MA, Helal HM, Mortada SM. Rationally designed nanocarriers for intranasaltherapy of allergic rhinitis: influence of carrier type on in vivo nasal deposition. Int J Nanomedicine. 2016;11:2345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Sallam MA, Motawaa AM, Mortada SM. A modern approach for controlled transdermal delivery of diflunisal: optimization and in vivo evaluation. Drug Dev Ind Pharm. 2013;39(4):600–10.

    Article  PubMed  CAS  Google Scholar 

  30. Elzoghby A, Freag M, Mamdouh H, Elkhodairy K. Zein-based nanocarriers as potential natural alternatives for drug and gene delivery: focus on cancer therapy. Curr Pharm Des. 2017.

  31. Paliwal R, Palakurthi S. Zein in controlled drug delivery and tissue engineering. J Control Release. 2014;189:108–22.

    Article  PubMed  CAS  Google Scholar 

  32. Lai L, Guo H. Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting. Int J Pharm. 2011;404(1):317–23.

    Article  PubMed  CAS  Google Scholar 

  33. Blouza IL, Charcosset C, Sfar S, Fessi H. Preparation and characterization of spironolactone-loaded nanocapsules for paediatric use. Int J Pharm. 2006;325(1):124–31.

    Article  CAS  Google Scholar 

  34. Rodriguez-Emmenegger C, Jäger A, Jäger E, Stepanek P, Alles AB, Guterres S, et al. Polymeric nanocapsules ultra stable in complex biological media. Colloids Surf B: Biointerfaces. 2011;83(2):376–81.

    Article  PubMed  CAS  Google Scholar 

  35. Elzoghby AO, Mostafa SK, Helmy MW, ElDemellawy MA, Sheweita SA. Multi-reservoir phospholipid Shell encapsulating protamine nanocapsules for co-delivery of letrozole and celecoxib in breast cancer therapy. Pharm Res. 2017;34(9):1956–69.

    Article  PubMed  CAS  Google Scholar 

  36. Elzoghby AO, Mostafa SK, Helmy MW, ElDemellawy MA, Sheweita SA. Superiority of aromatase inhibitor and cyclooxygenase-2 inhibitor combined delivery: hyaluronate-targeted versus PEGylated protamine nanocapsules for breast cancer therapy. Int J Pharm. 2017;529(1–2):178–92.

    Article  PubMed  CAS  Google Scholar 

  37. Lobato KB, Paese K, Forgearini JC, Guterres SS, Jablonski A, Rios Ade O. Characterisation and stability evaluation of bixin nanocapsules. Food Chem. 2013;141(4):3906–12.

    Article  PubMed  CAS  Google Scholar 

  38. Elgindy N, Elkhodairy K, Molokhia A, Elzoghby A. Lyophilization monophase solution technique for preparation of amorphous flutamide dispersions. Drug Dev Ind Pharm. 2011;37(7):754–64.

    Article  PubMed  CAS  Google Scholar 

  39. Abdel-Mottaleb MM, Neumann D, Lamprecht A. Lipid nanocapsules for dermal application: a comparative study of lipid-based versus polymer-based nanocarriers. Eur J Pharm Biopharm. 2011;79(1):36–42.

    Article  PubMed  CAS  Google Scholar 

  40. Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2012;64:128–37.

    Article  Google Scholar 

  41. Contri R, Fiel L, Alnasif N, Pohlmann A, Guterres S, Schäfer-Korting M. Skin penetration and dermal tolerability of acrylic nanocapsules: influence of the surface charge and a chitosan gel used as vehicle. Int J Pharm. 2016;507(1):12–20.

    Article  PubMed  CAS  Google Scholar 

  42. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H. Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym. 2010;82(2):227–32.

    Article  CAS  Google Scholar 

  43. Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol. 2014;64:353–67.

    Article  PubMed  CAS  Google Scholar 

  44. Anirudhan TS, Nair SS, Nair AS. Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine. Carbohydr Polym. 2016;152:687–98.

    Article  PubMed  CAS  Google Scholar 

  45. Hafner A, Lovric J, Pepic I, Filipovic-Grcic J. Lecithin/chitosan nanoparticles for transdermal delivery of melatonin. J Microencapsul. 2011;28(8):807–15.

    Article  PubMed  CAS  Google Scholar 

  46. Machida Y, Masuda H, Fujiyama N, Iwata M, Nagai T. Preparation and phase II clinical examination of topical dosage forms for the treatment of carcinoma colli containing bleomycin, carboquone, or 5-fluorouracil with Hydroxypropyl cellulose. Chem Pharm Bull (Tokyo). 1980;28(4):1125–30.

    Article  CAS  Google Scholar 

  47. Shin SC, Kim HJ, Oh IJ, Cho CW, Yang KH. Development of tretinoin gels for enhanced transdermal delivery. Eur J Pharm Biopharm. 2005;60(1):67–71.

    Article  PubMed  CAS  Google Scholar 

  48. Park SN, Jo NR, Jeon SH. Chitosan-coated liposomes for enhanced skin permeation of resveratrol. J Ind Eng Chem. 2014;20(4):1481–5.

    Article  CAS  Google Scholar 

  49. Taveira SF, Nomizo A, Lopez RF. Effect of the iontophoresis of a chitosan gel on doxorubicin skin penetration and cytotoxicity. J Control Release. 2009;134(1):35–40.

    Article  PubMed  CAS  Google Scholar 

  50. He W, Guo X, Xiao L, Feng M. Study on the mechanisms of chitosan and its derivatives used as transdermal penetration enhancers. Int J Pharm. 2009;382(1–2):234–43.

    Article  PubMed  CAS  Google Scholar 

  51. Yang Y, Sunoqrot S, Stowell C, Ji J, Lee C-W, Kim JW, et al. Effect of size, surface charge, and hydrophobicity of poly (amidoamine) dendrimers on their skin penetration. Biomacromolecules. 2012;13(7):2154–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Gillet A, Compère P, Lecomte F, Hubert P, Ducat E, Evrard B, et al. Liposome surface charge influence on skin penetration behaviour. Int J Pharm. 2011;411(1):223–31.

    Article  PubMed  CAS  Google Scholar 

  53. Lademann J, Patzelt A, Richter H, Antoniou C, Sterry W, Knorr F. Determination of the cuticula thickness of human and porcine hairs and their potential influence on the penetration of nanoparticles into the hair follicles. J Biomed Opt. 2009;14(2):021014.

    Article  PubMed  CAS  Google Scholar 

  54. Rancan F, Afraz Z, Combadiere B, Blume-Peytavi U, Vogt A. Hair follicle targeting with nanoparticles. In: Nasir A, Friedman A, Wang S, editors. Nanotechnology in dermatology. New York, NY: Springer New York; 2013. p. 95–107.

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by a research grant funded by center of special studies at bibliotheca Alexandrina (CSSP-BIBALEX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Ahmed Sallam.

Ethics declarations

Conflict of Interest

The authors reported no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sallam, M.A., Elzoghby, A.O. Flutamide-Loaded Zein Nanocapsule Hydrogel, a Promising Dermal Delivery System for Pilosebaceous Unit Disorders. AAPS PharmSciTech 19, 2370–2382 (2018). https://doi.org/10.1208/s12249-018-1087-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1087-z

KEY WORDS

Navigation