Controlled Release of 5-Fluorouracil from Alginate Beads Encapsulated in 3D Printed pH-Responsive Solid Dosage Forms


Three-dimensional printing is being steadily deployed as manufacturing technology for the development of personalized pharmaceutical dosage forms. In the present study, we developed a hollow pH-responsive 3D printed tablet encapsulating drug loaded non-coated and chitosan-coated alginate beads for the targeted colonic delivery of 5-fluorouracil (5-FU). A mixture of Eudragit® L100-55 and Eudragit® S100 was fabricated by means of hot-melt extrusion (HME) and the produced filaments were printed utilizing a fused deposition modeling (FDM) 3D printer to form the pH-responsive layer of the tablet with the rest comprising of a water-insoluble poly-lactic acid (PLA) layer. The filaments and alginate particles were characterized for their physicochemical properties (thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction), their surface topography was visualized by scanning electron microscopy and the filaments’ mechanical properties were assessed by instrumented indentation testing and tensile testing. The optimized filament formulation was 3D printed and the structural integrity of the hollow tablet in increasing pH media (pH 1.2 to pH 7.4) was assessed by means of time-lapsed microfocus computed tomography (μCT). In vitro release studies demonstrated controlled release of 5-FU from the alginate beads encapsulated within the hollow pH-sensitive tablet matrix at pH values corresponding to the colonic environment (pH 7.4). The present study highlights the potential of additive manufacturing in fabricating controlled-release dosage forms rendering them pertinent formulations for further in vivo evaluation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Fina F, Goyanes A, Gaisford S, Basit AW. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529:285–93.

    CAS  Google Scholar 

  2. 2.

    Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016;503:207–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Goyanes A, Wang J, Buanz A, Martinez-Pacheco R, Telford R, Gaisford S, et al. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm. 2015;12:4077–84.

    CAS  PubMed  Google Scholar 

  4. 4.

    Gioumouxouzis CI, Katsamenis OL, Bouropoulos N, Fatouros DG. 3D printed oral solid dosage forms containing hydrochlorothiazide for controlled drug delivery. J Drug Deliv Sci Technol. 2017;40:164–71.

    CAS  Google Scholar 

  5. 5.

    Chai X, Chai H, Wang X, Yang J, Li J, Zhao Y, et al. Fused deposition modeling (FDM) 3D printed tablets for intragastric floating delivery of domperidone. Sci. Rep. [Internet]. 2017;7:2829. Available from:

    PubMed Central  Google Scholar 

  6. 6.

    Holländer J, Genina N, Jukarainen H, Khajeheian M, Rosling A, Mäkilä E, et al. Three-dimensional printed PCL-based implantable prototypes of medical devices for controlled drug delivery. J Pharm Sci. 2016;105:2665–76.

    PubMed  Google Scholar 

  7. 7.

    Markl D, Zeitler JA, Rasch C, Michaelsen MH, Müllertz A, Rantanen J, et al. Analysis of 3D prints by X-ray computed microtomography and terahertz pulsed imaging. Pharm Res. 2017;34:1037–52.

    CAS  PubMed  Google Scholar 

  8. 8.

    Beck RCR, Chaves PS, Goyanes A, Vukosavljevic B, Buanz A, Windbergs M, et al. 3D printed tablets loaded with polymeric nanocapsules: an innovative approach to produce customized drug delivery systems. Int J Pharm. 2017;528:268–79.

    CAS  PubMed  Google Scholar 

  9. 9.

    Lee YE, Kim H, Seo C, Park T, Lee KB, Yoo SY, et al. Marine polysaccharides: therapeutic efficacy and biomedical applications. Arch Pharm Res. 2017;40:1006–20.

    CAS  PubMed  Google Scholar 

  10. 10.

    Ohya Y, Takei T, Kobayashi H, Ouchi T. Release behaviour of 5-fluorouracil from chitosan-gel microspheres immobilizing 5-fluorouracil derivative coated with polysaccharides and their cell specific recognition. J Microencapsul. 1993;10:1–9.

    CAS  PubMed  Google Scholar 

  11. 11.

    Akbuǵa J, Bergişadi N. 5-Fluorouracil-loaded chitosan microspheres: preparation and release characteristics. J Microencapsul. 1996;13:161–8.

    PubMed  Google Scholar 

  12. 12.

    Ramdas M, Dileep KJ, Anitha Y, Paul W, Sharma CP. Alginate encapsulated bioadhesive chitosan microspheres for intestinal drug delivery. J Biomater Appl. 1999;13:290–6.

    CAS  PubMed  Google Scholar 

  13. 13.

    Yu CY, Zhang XC, Zhou FZ, Zhang XZ, Cheng SX, Zhuo RX. Sustained release of antineoplastic drugs from chitosan-reinforced alginate microparticle drug delivery systems. Int J Pharm. 2008;357:15–21.

    CAS  PubMed  Google Scholar 

  14. 14.

    Glavas Dodov M, Calis S, Crcarevska MS, Geskovski N, Petrovska V, Goracinova K. Wheat germ agglutinin-conjugated chitosan-Ca-alginate microparticles for local colon delivery of 5-FU: development and in vitro characterization. Int J Pharm. 2009;381:166–75.

    CAS  PubMed  Google Scholar 

  15. 15.

    Glavas-Dodov M, Steffansen B, Crcarevska MS, Geskovski N, Dimchevska S, Kuzmanovska S, et al. Wheat germ agglutinin-functionalised crosslinked polyelectrolyte microparticles for local colon delivery of 5-FU: in vitro efficacy and in vivo gastrointestinal distribution. J Microencapsul. 2013;30:643–56.

    CAS  PubMed  Google Scholar 

  16. 16.

    Li G, Song S, Zhang T, Qi M, Liu J. PH-sensitive polyelectrolyte complex micelles assembled from CS-g-PNIPAM and ALG-g-P(NIPAM-co-NVP) for drug delivery. Int J Biol Macromol. 2013;62:203–10.

    CAS  PubMed  Google Scholar 

  17. 17.

    Di Martino A, Pavelkova A, Maciulyte S, Budriene S, Sedlarik V. Polysaccharide-based nanocomplexes for co-encapsulation and controlled release of 5-fluorouracil and temozolomide. Eur J Pharm Sci. 2016;92:276–86.

    PubMed  Google Scholar 

  18. 18.

    Lakkakula JR, Matshaya T, Krause RWM. Cationic cyclodextrin/alginate chitosan nanoflowers as 5-fluorouracil drug delivery system. Mater Sci Eng C. 2017;70:169–77.

    CAS  Google Scholar 

  19. 19.

    Okwuosa TC, Pereira BC, Arafat B, Cieszynska M, Isreb A, Alhnan MA. Fabricating a shell-core delayed release tablet using dual FDM 3D printing for patient-centred therapy. Pharm Res. 2017;34:427–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Zhang J, Feng X, Patil H, Tiwari RV, Repka MA. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm. 2017;519:186–97.

    CAS  Google Scholar 

  21. 21.

    Sadia M, Sośnicka A, Arafat B, Isreb A, Ahmed W, Kelarakis A, et al. Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int J Pharm. 2016;513:659–68.

    CAS  PubMed  Google Scholar 

  22. 22.

    Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm. 2015;96:380–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Gioumouxouzis CI, Baklavaridis A, Katsamenis OL, Markopoulou CK, Bouropoulos N, Tzetzis D, et al. A 3D printed bilayer oral solid dosage form combining metformin for prolonged and glimepiride for immediate drug delivery. Eur J Pharm Sci. 2018;120:40–52.

    CAS  PubMed  Google Scholar 

  24. 24.

    Rodríguez M, Vila-Jato JL, Torres D. Design of a new multiparticulate system for potential site-specific and controlled drug delivery to the colonic region. J Control Release. 1998;55:67–77.

    PubMed  Google Scholar 

  25. 25.

    Krishnaiah YSR, Satyanarayana V, Kumar BD, Karthikeyan RS, Bhaskar P. In vivo pharmacokinetics in human volunteers: oral administered guar gum-based colon-targeted 5-fluorouracil tablets. Eur J Pharm Sci. 2003;19:355–62.

    CAS  PubMed  Google Scholar 

  26. 26.

    Goto T, Tomizawa N, Kobayashi E, Fujimura A. A comparative pharmacology study between the intracolonic and oral routes of 5-FU administration in a colon cancer-bearing Yoshida sarcoma rat model. J Pharmacol Sci. 2004;95:163–73.

    CAS  PubMed  Google Scholar 

  27. 27.

    Chomcharn N, Xanthos M. Properties of aspirin modified enteric polymer prepared by hot-melt mixing. Int J Pharm. 2013;450:259–67.

    CAS  PubMed  Google Scholar 

  28. 28.

    Parikh T, Gupta SS, Meena A, Serajuddin ATM. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion—III: polymethacrylates and polymethacrylic acid based polymers. J. Excipients Food Chem. 2014;5:56–64.

  29. 29.

    Thoma K, Bechtold K. Influence of aqueous coatings on the stability of enteric coated pellets and tablets. Eur J Pharm Biopharm. 1999;47:39–50.

    CAS  PubMed  Google Scholar 

  30. 30.

    Mansour G, Tzetzis D, Bouzakis KD. A nanomechanical approach on the measurement of the elastic properties of epoxy reinforced carbon nanotube nanocomposites. Tribol Ind. 2013;35:190–9.

    Google Scholar 

  31. 31.

    Tzetzis D, Mansour G, Tsiafis I, Pavlidou E. Nanoindentation measurements of fumed silica epoxy reinforced nanocomposites. J Reinf Plast Compos. 2013;32:160–73.

    Google Scholar 

  32. 32.

    Mansour G, Tzetzis D. Nanomechanical characterization of hybrid multiwall carbon nanotube and fumed silica epoxy nanocomposites. Polym - Plast Technol Eng. 2013;52:1054–62.

    CAS  Google Scholar 

  33. 33.

    Katsamenis OL, Olding M, Hutchinson C, Jones GM, Mavrogordato MN, Schneider P, Lackie P, Warner JA, Haig I, Richeldi LSI . Development of X-ray microfocus computer tomography for clinical applications. Pap. Present. 3rd Annu. Futur. Med. - Role Dr. 2027. London, UK; 2017.

  34. 34.

    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    CAS  PubMed  Google Scholar 

  35. 35.

    Kyzioł A, Mazgała A, Michna J, Regiel-Futyra A, Sebastian V. Preparation and characterization of alginate/chitosan formulations for ciprofloxacin-controlled delivery. J Biomater Appl. 2017;32:162–74.

    PubMed  Google Scholar 

  36. 36.

    Sun X, Shi J, Xu X, Cao S. Chitosan coated alginate/poly(N-isopropylacrylamide) beads for dual responsive drug delivery. Int J Biol Macromol. 2013;59:273–81.

    PubMed  Google Scholar 

  37. 37.

    Lotlikar V, Kedar U, Shidhaye S, Kadam V. PH-responsive dual pulse multiparticulate dosage form for treatment of rheumatoid arthritis. Drug Dev Ind Pharm. 2010;36:1295–302.

    CAS  PubMed  Google Scholar 

  38. 38.

    Chawla A, Sharma P, Pawar P. Eudragit S-100 coated sodium alginate microspheres of naproxen sodium: formulation, optimization and in vitro evaluation. Acta Pharma. 2012;62:529–45.

    CAS  Google Scholar 

  39. 39.

    Cao X, Mohamed A, Gordon SH, Willett JL, Sessa DJ. DSC study of biodegradable poly(lactic acid) and poly(hydroxy ester ether) blends. Thermochim Acta. 2003;406:115–27.

    CAS  Google Scholar 

  40. 40.

    Moisescu-Goia C, Muresan-Pop M, Simon V. New solid state forms of antineoplastic 5-fluorouracil with anthelmintic piperazine. J Mol Struct. 2017;1150:37–43.

    CAS  Google Scholar 

  41. 41.

    Li Y, Xu J, Xu Y, Huang L, Wang J, Cheng X. Synthesis and characterization of fluorescent chitosan–ZnSe/ZnS nanoparticles for potential drug carriers. RSC Adv. 2015;5:38810–7.

    CAS  Google Scholar 

  42. 42.

    Nivethaa EAK, Dhanavel S, Narayanan V, Vasu CA, Stephen A. An in vitro cytotoxicity study of 5-fluorouracil encapsulated chitosan/gold nanocomposites towards MCF-7 cells. RSC Adv. 2015;5:1024–32.

    CAS  Google Scholar 

  43. 43.

    Sharma M, Sharma V, Panda AK, Majumdar DK. Development of enteric submicron particle formulation of papain for oral delivery. Int J Nanomedicine. 2011;6:2097–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Kienzle-Sterzer CA, Rodriguez-Sanchez D, Rha CK. Flow behavior of a cationic biopolymer: chitosan. Polym Bull. 1985;13:1–6.

    CAS  Google Scholar 

  45. 45.

    Chang JJ, Lee YH, Wu MH, Yang MC, Chien CT. Preparation of electrospun alginate fibers with chitosan sheath. Carbohydr Polym. 2012;87:2357–61.

    CAS  Google Scholar 

  46. 46.

    Dey SK, De PK, De A, Ojha S, De R, Mukhopadhyay AK, et al. Floating mucoadhesive alginate beads of amoxicillin trihydrate: a facile approach for H. pylori eradication. Int J Biol Macromol. 2016;89:622–31.

    CAS  PubMed  Google Scholar 

  47. 47.

    Mehuys E, Remon JP, Vervaet C. Production of enteric capsules by means of hot-melt extrusion. Eur J Pharm Sci. 2005;24:207–12.

    CAS  PubMed  Google Scholar 

Download references


The authors would like to acknowledge μ-VIS X-Ray Imaging Centre and the Biomedical Imaging Unit at the University of Southampton for provision of tomographic imaging facilities, as well as Nikon Metrology UK Ltd for the provision of the Med-X prototype scanner.

Author information



Corresponding author

Correspondence to Dimitrios G. Fatouros.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Guest Editors: Niklas Sandler and Jukka Rantanen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gioumouxouzis, C.I., Chatzitaki, A., Karavasili, C. et al. Controlled Release of 5-Fluorouracil from Alginate Beads Encapsulated in 3D Printed pH-Responsive Solid Dosage Forms. AAPS PharmSciTech 19, 3362–3375 (2018).

Download citation


  • three-dimensional printing
  • microfocus computed tomography
  • colonic delivery
  • alginate beads
  • 5-FU