Advertisement

AAPS PharmSciTech

, Volume 19, Issue 6, pp 2499–2508 | Cite as

Enhancing Stability of Exenatide-Containing Pressurized Metered-Dose Inhaler Via Reverse Microemulsion System

  • Xing Li
  • Ying Huang
  • Zhengwei Huang
  • Xiangyu Ma
  • Ni Dong
  • Wanxin Chen
  • Xin Pan
  • Chuanbin Wu
Research Article

Abstract

The dispersibility and stability issues of peptide drugs during preparation and storage hinder the widespread adoption of pressurized metered-dose inhaler (pMDI). This study aimed to develop a reverse microemulsion (RM) of exenatide (EXE) pMDI through a liquid-based bottom-up method, thus to overcome the stability issue of peptide drugs encountered in traditional top-down methods, such as milling down and high-pressure homogenization. In this study, Pluronic® L64 (L64) was chosen as a surfactant to prepare the EXE-RM pMDI formulations with the assistance of ethanol. The results showed RM possessed a particle size of 123.80 ± 2.91 nm with 0.121 ± 0.024 PdI and a satisfied fine-particle fraction of 41.30 ± 3.73% measured by a next-generation impactor. In addition, the dispersion stability of RM pMDI was maintained after storage at 4 °C for 50 days. The secondary structure of EXE was maintained during the preparation process. Moreover, the results indicated that L64 was compatible with cells and could improve the penetration of EXE through cell monolayers. Through the liquid-based bottom-up method, EXE-RM pMDI was successfully prepared and exhibited favorable stability and aerodynamic performance. This study offers a preparation strategy to enhance the stability of peptides in pMDIs.

KEY WORDS

pulmonary drug delivery system pressurized metered-dose inhaler peptide drugs reverse microemulsion non-ionic surfactants 

Notes

Funding

This work was supported by the National Science Foundation of China Grants 81202476 and 81673375, the Basic Scientific Research Business Expense of the University for the Young Teacher Cultivation Project of Sun Yat-Sen University (Grant No. 16ykpy23), and the 111 project (Grant No. B16047).

References

  1. 1.
    Lagasse HA, Alexaki A, Simhadri VL, Katagiri NH, Jankowski W, Sauna ZE, et al. Recent advances in (therapeutic protein) drug development. F1000Res. 2017;6:113.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Dominic A, Ishtiaq A, Zain A, Hafiz MNI, Michael KD. Protein and peptide biopharmaceuticals: an overview. Protein Pept Lett. 2017;24(2):94–101.CrossRefGoogle Scholar
  3. 3.
    Asim A, Ejaj A, Qamar Z, Mohammad O, Ghulam MA. Recent updates on molecular genetic engineering approaches and applications of human therapeutic proteins. Curr Protein Pept Sci. 2017;18(3):217–32.CrossRefGoogle Scholar
  4. 4.
    Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014;13(9):655–72.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Satomi O, Hiroki S, Yoshiki S. Formulation approaches to overcome biopharmaceutical limitations of inhaled peptides/proteins. Curr Pharm Des. 2015;21(27):3867–74.CrossRefGoogle Scholar
  6. 6.
    Fu A, Tang R, Hardie J, Farkas ME, Rotello VM. Promises and pitfalls of intracellular delivery of proteins. Bioconjug Chem. 2014;25(9):1602–8.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Andrade F, Videira M, Ferreira D, Sarmento B. Nanocarriers for pulmonary administration of peptides and therapeutic proteins. Nanomedicine. 2010;6(1):123–41.CrossRefGoogle Scholar
  8. 8.
    Kuehl C, Thati S, Sullivan B, Sestak J, Thompson M, Siahaan T, et al. Pulmonary administration of soluble antigen arrays is superior to antigen in treatment of experimental autoimmune encephalomyelitis. J Pharm Sci. 2017;106(11):3293–302.CrossRefPubMedGoogle Scholar
  9. 9.
    Röhm M, Carle S, Maigler F, Flamm J, Kramer V, Mavoungou C, et al. A comprehensive screening platform for aerosolizable protein formulations for intranasal and pulmonary drug delivery. Int J Pharm. 2017;532(1):537–46.CrossRefPubMedGoogle Scholar
  10. 10.
    Huang Z, Wu H, Yang B, Chen L, Huang Y, Quan G, et al. Anhydrous reverse micelle nanoparticles: new strategy to overcome sedimentation instability of peptide-containing pressurized metered-dose inhalers. Drug Deliv. 2017;24(1):527–38.CrossRefPubMedGoogle Scholar
  11. 11.
    Shan Z, Tan Y, Qin L, Li G, Pan X, Wang Z, et al. Formulation and evaluation of novel reverse microemulsions containing salmon calcitonin in hydrofluoroalkane propellants. Int J Pharm. 2014;466(1–2):390–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Yang W, Peters JI, Williams RO. Inhaled nanoparticles—a current review. Int J Pharm. 2008;356(1–2):239–47.CrossRefPubMedGoogle Scholar
  13. 13.
    Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev. 2010;62(1):59–82.CrossRefPubMedGoogle Scholar
  14. 14.
    Kaur R, Garg T, Malik B, Gupta UD, Gupta P, Rath G, et al. Development and characterization of spray-dried porous nanoaggregates for pulmonary delivery of anti-tubercular drugs. Drug Deliv. 2016;23(3):882–7.PubMedGoogle Scholar
  15. 15.
    Lombry C, Bosquillon C, Préat V, Vanbever R. Confocal imaging of rat lungs following intratracheal delivery of dry powders or solutions of fluorescent probes. J Control Release. 2002;83(3):331–41.CrossRefPubMedGoogle Scholar
  16. 16.
    Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67–74.CrossRefPubMedGoogle Scholar
  17. 17.
    Ibrahim M, Garcia-Contreras L. Mechanisms of absorption and elimination of drugs administered by inhalation. Ther Deliv. 2013;4(8):1027–45.CrossRefPubMedGoogle Scholar
  18. 18.
    Tan Y, Yang Z, Peng X, Xin F, Xu Y, Feng M, et al. A novel bottom-up process to produce nanoparticles containing protein and peptide for suspension in hydrofluoroalkane propellants. Int J Pharm. 2011;413(1–2):167–73.CrossRefPubMedGoogle Scholar
  19. 19.
    Myrdal PB, Sheth P, Stein SW. Advances in metered dose inhaler technology: formulation development. AAPS PharmSciTech. 2014;15(2):434–55.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Williams Iii RO, Liu J. Formulation of a protein with propellant HFA 134a for aerosol delivery. Eur J Pharm Sci. 1999;7(2):137–44.CrossRefGoogle Scholar
  21. 21.
    Ooi J, Traini D, Boyd BJ, Gaisford S, Young PM. Determination of physical and chemical stability in pressurised metered dose inhalers: potential new techniques. Expert Opin Drug Deliv. 2015;12(10):1661–75.CrossRefPubMedGoogle Scholar
  22. 22.
    Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785–96.CrossRefPubMedGoogle Scholar
  23. 23.
    Thao Truong-Dinh T, Phuong Ha-Lien T, Khanh Tu N, Van-Thanh T. Nano-precipitation: preparation and application in the field of pharmacy. Curr Pharm Des. 2016;22(20):2997–3006.CrossRefGoogle Scholar
  24. 24.
    Meakin B, Lewis D, Berrill S, Davies R. Solubilisation of drugs in HFA propellant by means of emulsions. U.S. Patent Apllication 10/515,337,2006-7-27.Google Scholar
  25. 25.
    Patel N, Marlow M, Lawrence MJ. Fluorinated ionic surfactant microemulsions in hydrofluorocarbon 134a (HFC 134a). J Colloid Interface Sci. 2003;258(2):354–62.CrossRefPubMedGoogle Scholar
  26. 26.
    Patel N, Marlow M, Lawrence MJ. Formation of fluorinated nonionic surfactant microemulsions in hydrofluorocarbon 134a (HFC 134a). J Colloid Interface Sci. 2003;258(2):345–53.CrossRefPubMedGoogle Scholar
  27. 27.
    Selvam P, Chokshi U, Gouch A, Wu L, Porcar L, da Rocha SRP. Ethoxylated copolymersurfactants for the HFA134a—water interface: interfacial activity, aggregate microstructure and biomolecule uptake. Soft Matter. 2008;4(2):357–66.CrossRefGoogle Scholar
  28. 28.
    Steytler DC, Thorpe M, Eastoe J, Dupont A, Heenan R. Microemulsion Formation in 1,1,1,2-Tetrafluoroethane (R134a). Langmuir. 2003;19(21),8715–20.Google Scholar
  29. 29.
    Szayna M, MiE D, Betkey JA, Holloway HW, Spencer RGS, Greig NH, et al. Exendin-4 decelerates food intake, weight gain, and fat deposition in Zucker rats. Endocrinology. 2000;141(6):1936–41.CrossRefPubMedGoogle Scholar
  30. 30.
    Salama RO, Ladd L, Chan HK, Traini D, Young PM. Development of an in vivo ovine dry powder inhalation model for the evaluation of conventional and controlled release microparticles. AAPS J. 2009;11(3):465–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Aggarwal B, Gogtay J. Use of pressurized metered dose inhalers in patients with chronic obstructive pulmonary disease: review of evidence. Expert Rev Respir Med. 2014;8(3):349–56.CrossRefPubMedGoogle Scholar
  32. 32.
    Kabanov AV. AVY. Pluronic® block copolymers in drug delivery: From micellar nanocontainers to biological response modifiers. Crit Rev Ther Drug Carrier Syst. 2002;19(1):1–72.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhao Y, Brown MB, Jones SA. Engineering novel topical foams using hydrofluroalkane emulsions stabilised with pluronic surfactants. Eur J Pharm Sci. 2009;37(3–4):370–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhao Y, Moddaresi M, Jones SA, Brown MB. A dynamic topical hydrofluoroalkane foam to induce nanoparticle modification and drug release in situ. Eur J Pharm Biopharm. 2009;72(3):521–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Chokshi U, Selvam P, Porcar L, da Rocha SR. Reverse aqueous emulsions and microemulsions in HFA227 propellant stabilized by non-ionic ethoxylated amphiphiles. Int J Pharm. 2009;369(1–2):176–84.CrossRefPubMedGoogle Scholar
  36. 36.
    Psathas PA, d Rocha SRP, Lee CT, et al. Water-in-carbon dioxide emulsions with poly(dimethylsiloxane)-based block copolymer ionomers. Ind Eng Chem Res. 2000;39:2655–64.CrossRefGoogle Scholar
  37. 37.
    Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2012;64:175–93.CrossRefGoogle Scholar
  38. 38.
    Kreuter J. Colloidal drug delivery systems. PDA J Pharm Sci Technol. 1994;55(4):240–7.Google Scholar
  39. 39.
    Heuschkel S, Goebel A, Neubert RHH. Microemulsions—modern colloidal carrier for dermal and transdermal drug delivery. J Pharm Sci. 2008;97(2):603–31.CrossRefPubMedGoogle Scholar
  40. 40.
    Strey R. Microemulsion microstructure and interfacial curvature. Colloid Polym Sci. 1994;272(8):1005–19.CrossRefGoogle Scholar
  41. 41.
    Sheth P, Stein SW, Myrdal PB. Factors influencing aerodynamic particle size distribution of suspension pressurized metered dose inhalers. AAPS PharmSciTech. 2015;16(1):192–201.CrossRefPubMedGoogle Scholar
  42. 42.
    Khan TA, Mahler HC, Kishore RS. Key interactions of surfactants in therapeutic protein formulations: a review. Eur J Pharm Biopharm. 2015;97(Pt A):60–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Bam NB, Randolph TW, Cleland JL. Stability of protein formulations: investigation of surfactant effects by a novel EPR spectroscopic technique. Pharm Res. 1995;12(1):2–11.Google Scholar
  44. 44.
    Bam NB, Cleland JL, Yang J, Manning MC, Carpenter JF, Kelley RF, et al. Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions. J Pharm Sci. 1998;87(12):1554–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Kreilgaard L, Jones LS, Randolph TW, Frokjaer S, Flink JM, Manning MC, et al. Effect of tween 20 on freeze-thawing- and agitation-induced aggregation of recombinant human factor XIII. J Pharm Sci. 1998;87(12):1597–603.CrossRefPubMedGoogle Scholar
  46. 46.
    Vervaet C, Byron PR. Drug–surfactant–propellant interactions in HFA-formulations. Int J Pharm. 1999;186(1):13–30.CrossRefPubMedGoogle Scholar
  47. 47.
    Grozdova ID, Badun GA, Chernysheva MG, Orlov VN, Romanyuk NS, Melik-Nubarov N. Increase in the length of poly(ethylene oxide) blocks in amphiphilic copolymers facilitates their cellular uptake. J Appl Polym Sci. 2017;134(44).  https://doi.org/10.1002/app.45492
  48. 48.
    Mina EW, Lasagna-Reeves C, Glabe CG, Kayed R. Poloxamer 188 copolymer membrane sealant rescues toxicity of amyloid oligomers in vitro. J Mol Biol. 2009;391(3):577–85.CrossRefPubMedGoogle Scholar
  49. 49.
    Yasuda S, Townsend D, Michele DE, Favre EG, Day SM, Metzger JM. Dystrophic heart failure blocked by membrane sealant poloxamer. Nature. 2005;436(7053):1025–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Krylova OO, Melik-Nubarov NS, Badun GA, Ksenofontov AL, Menger FM, Yaroslavov AA. Pluronic L61 accelerates flip-flop and transbilayer doxorubicin permeation. Chemistry. 2003;9(16):3930–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Venne A, Li S, Mandeville R, Kabanov A, Alakhov V. Hypersensitizing effect of Pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells. Cancer Res. 1996;56(16):3626–9.PubMedGoogle Scholar
  52. 52.
    Kostarelos K, Tadros T, Luckham P. Physical conjugation of (tri-) block copolymers to liposomes toward the construction of sterically stablized vesicle systems. Langmuir. 1998;15(2):369–76.Google Scholar
  53. 53.
    Selvam P, Bharatwaj B, Porcar L, da Rocha SR. Reverse aqueous microemulsions in hydrofluoroalkane propellants and their aerosol characteristics. Int J Pharm. 2012;422(1–2):428–35.CrossRefPubMedGoogle Scholar
  54. 54.
    Wu L, Bharatwaj B, Panyam J, da Rocha SR. Core-shell particles for the dispersion of small polar drugs and biomolecules in hydrofluoroalkane propellants. Pharm Res. 2008;25(2):289–301.CrossRefPubMedGoogle Scholar
  55. 55.
    Alakhov V, Klinski E, Li S, Pietrzynski G, Venne A, Batrakova E, et al. Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials. Colloids Surf B: Biointerfaces. 1999;16(1-4):113–34.Google Scholar
  56. 56.
    Warisnoicharoen W, Lansley AB, Lawrence MJ. Toxicological evaluation of mixtures of nonionic surfactants, alone and in combination with oil. J Pharm Sci. 2003;92(4):859–68.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Xing Li
    • 1
  • Ying Huang
    • 1
  • Zhengwei Huang
    • 1
  • Xiangyu Ma
    • 2
  • Ni Dong
    • 1
  • Wanxin Chen
    • 1
  • Xin Pan
    • 1
  • Chuanbin Wu
    • 1
  1. 1.School of Pharmaceutical Sciences, Guangzhou Higher Education Mega CenterSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.College of PharmacyUniversity of Texas at AustinAustinUSA

Personalised recommendations