AAPS PharmSciTech

, Volume 19, Issue 5, pp 2118–2132 | Cite as

Fabrication of Nanosuspension Directly Loaded Fast-Dissolving Films for Enhanced Oral Bioavailability of Olmesartan Medoxomil: In Vitro Characterization and Pharmacokinetic Evaluation in Healthy Human Volunteers

  • Jihad Mahmoud Alsofany
  • Manal Yassin Hamza
  • Aly Ahmed AbdelbaryEmail author
Research Article


Olmesartan medoxomil (OM) is an antihypertensive drug with poor water solubility and low oral bioavailability (28.6%). Accordingly, this study aimed to formulate and evaluate OM nanosuspension incorporated into oral fast-dissolving films (FDFs) for bioavailability enhancement. OM nanosuspension was prepared by antisolvent-precipitation-ultrasonication method and characterized regarding particle size (122.67 ± 5.03 nm), span value (1.40 ± 0.51), and zeta potential (− 46.56 ± 1.20 mV). Transmission electron microscopy (TEM) of the nanosuspension showed spherical non-aggregating nanoparticles. The nanosuspension was then directly loaded into FDFs by solvent casting technique. A full factorial design (22 × 31) was implemented for optimization of the FDFs using Design-Expert® software. Physical and mechanical characteristics in addition to dissolution profiles of the FDFs were investigated. The optimum formula (FDF1) showed 0.43 ± 0.02 kg/mm2 tensile strength, 20.50 ± 2.12 s disintegration time, and 87.53 ± 2.50 and 95.99 ± 0.25% OM dissolved after 6 and 10 min, respectively. Accelerated and long-term shelf stability studies confirmed the stability of FDF1. More than 75% OM was dissolved within 10 min from FDF1 compared with 9.80 and 47.80% for films prepared using coarse drug powder and market tablet, respectively. Relative bioavailability of FDF1 compared to market tablet was assessed in healthy human volunteers. The Cmax value increased significantly from 66.62 ± 14.95 to 179.28 ± 23.96 ng/mL for market tablet and FDF1, respectively. Similarly, the AUC0–72 value significantly increased from 498.36 ± 217.46 to 1083.67 ± 246.32 ng h/mL for market tablet and FDF1, respectively. Relative bioavailability of FDF1 was 209.28%. The highlighted results verified the effectiveness of OM nanosuspension-loaded FDFs in improving OM bioavailability.


bioavailability nanosuspension fast-dissolving films factorial design olmesartan medoxomil 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Rahman MM, Khalipha ABR, Azad MAK, Hossain S, Haque S. Methods of solubility and dissolution enhancement for poorly water soluble drugs: a review. World J Pharm Pharm Sci. 2014;3(5):107–30.Google Scholar
  2. 2.
    Abhinav M, Neha J, Anne G, Bharti V. Role of novel drug delivery systems in bioavailability enhancement: at a glance. Int J Drug Deliv Tech. 2016;6(1):7–26.Google Scholar
  3. 3.
    Srikumaran Melethil PhD J. Nanopharmaceuticals patenting issues and FDA regulatory challenges. SciTech Lawyer. 2008;5(2):10.Google Scholar
  4. 4.
    Wang K, Huang Q, Qiu F, Sui M. Non-viral delivery systems for the application in p53 cancer gene therapy. Curr Med Chem. 2015;22(35):4118–36.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang B, Wang K, Si J, Sui M, Shen Y. Charge-reversal polymers for biodelivery. In: Gu Z, editor. Bioinspired and biomimetic polymer systems for drug and gene delivery. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2014. p. 223–41.Google Scholar
  6. 6.
    Fan Z, Fu M, Xu Z, Zhang B, Li Z, Li H, et al. Sustained release of a peptide-based matrix metalloproteinase-2 inhibitor to attenuate adverse cardiac remodeling and improve cardiac function following myocardial infarction. Biomacromolecules. 2017;18(9):2820–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yoshizumi T, Zhu Y, Jiang H, D'Amore A, Sakaguchi H, Tchao J, et al. Timing effect of intramyocardial hydrogel injection for positively impacting left ventricular remodeling after myocardial infarction. Biomaterials. 2016;83:182–93.CrossRefPubMedGoogle Scholar
  8. 8.
    Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv. 2007;4(4):403–16.CrossRefPubMedGoogle Scholar
  9. 9.
    Vemula VR, Lagishetty V, Lingala S. Solubility enhancement techniques. Int J Pharm Sci Rev Res. 2010;5(1):41–51.Google Scholar
  10. 10.
    Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785–96.CrossRefPubMedGoogle Scholar
  11. 11.
    Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev. 2011;63(6):427–40.CrossRefPubMedGoogle Scholar
  12. 12.
    Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm. 1995;125(1):91–7.CrossRefGoogle Scholar
  13. 13.
    Mou D, Chen H, Wan J, Xu H, Yang X. Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility. Int J Pharm. 2011;413(1–2):237–44.CrossRefPubMedGoogle Scholar
  14. 14.
    Xu Y, Liu X, Lian R, Zheng S, Yin Z, Lu Y, et al. Enhanced dissolution and oral bioavailability of aripiprazole nanosuspensions prepared by nanoprecipitation/homogenization based on acid-base neutralization. Int J Pharm. 2012;438(1–2):287–95.CrossRefPubMedGoogle Scholar
  15. 15.
    Keck CM, Muller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62(1):3–16.CrossRefPubMedGoogle Scholar
  16. 16.
    Shen BD, Shen CY, Yuan XD, Bai JX, Lv QY, Xu H, et al. Development and characterization of an orodispersible film containing drug nanoparticles. Eur J Pharm Biopharm. 2013;85(3 Pt B):1348–56.CrossRefPubMedGoogle Scholar
  17. 17.
    Bais PV, Upadhye KP, Dixit G. Formulation and evaluation of fast dissolving oral melt-in-mouth of lorazepam for sublingual use. World J Pharm Pharm Sci. 2016;5(3):763–75.Google Scholar
  18. 18.
    Patel AR, Prajapati DS, Raval JA. Fast dissolving films (FDFs) as a newer venture in fast dissolving dosage forms. Int J Drug Dev Res. 2010;2(2):232–46.Google Scholar
  19. 19.
    Liu C, Chang D, Zhang X, Sui H, Kong Y, Zhu R, et al. Oral fast-dissolving films containing lutein nanocrystals for improved bioavailability: formulation development, in vitro and in vivo evaluation. AAPS PharmSciTech. 2017;18(8):2957–64.CrossRefPubMedGoogle Scholar
  20. 20.
    Sievens-Figueroa L, Bhakay A, Jerez-Rozo JI, Pandya N, Romanach RJ, Michniak-Kohn B, et al. Preparation and characterization of hydroxypropyl methyl cellulose films containing stable BCS class II drug nanoparticles for pharmaceutical applications. Int J Pharm. 2012;423(2):496–508.CrossRefPubMedGoogle Scholar
  21. 21.
    Shen C, Shen B, Xu H, Bai J, Dai L, Lv Q, et al. Formulation and optimization of a novel oral fast dissolving film containing drug nanoparticles by Box-Behnken design-response surface methodology. Drug Dev Ind Pharm. 2014;40(5):649–56.CrossRefPubMedGoogle Scholar
  22. 22.
    Brousil JA, Burke JM. Olmesartan medoxomil: an angiotensin II-receptor blocker. Clin Ther. 2003;25(4):1041–55.CrossRefPubMedGoogle Scholar
  23. 23.
    Gardner SF, Franks AM. Olmesartan medoxomil: the seventh angiotensin receptor antagonist. Ann Pharmacother. 2003;37(1):99–105.CrossRefPubMedGoogle Scholar
  24. 24.
    Thakkar HP, Patel BV, Thakkar SP. Development and characterization of nanosuspensions of olmesartan medoxomil for bioavailability enhancement. J Pharm Bioallied Sci. 2011;3(3):426–34.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Somaskandan S, Swaminathan R, Muthukuamraswamy KA, Abdul Shareef M. Formulation of olmesartan medoxomil nanoparticulate drug delivery for enhancement of oral bioavailability by ionic-gelation techniques. J Pharm Res. 2014;8(8):1067–70.Google Scholar
  26. 26.
    Attari Z, Bhandari A, Jagadish PC, Lewis S. Enhanced ex vivo intestinal absorption of olmesartan medoxomil nanosuspension: preparation by combinative technology. Saudi Pharm J. 2016;24(1):57–63.CrossRefPubMedGoogle Scholar
  27. 27.
    Arun B, Narendar D, Veerabrahma K. Development of olmesartan medoxomil lipid-based nanoparticles and nanosuspension: preparation, characterization and comparative pharmacokinetic evaluation. Artif Cells Nanomed Biotechnol. 2018;46(1):126–37.CrossRefGoogle Scholar
  28. 28.
    Nagaraj K, Narendar D, Kishan V. Development of olmesartan medoxomil optimized nanosuspension using the Box-Behnken design to improve oral bioavailability. Drug Dev Ind Pharm. 2017;43(7):1186–96.CrossRefPubMedGoogle Scholar
  29. 29.
    Jain S, Patel K, Arora S, Reddy VA, Dora CP. Formulation, optimization, and in vitro-in vivo evaluation of olmesartan medoxomil nanocrystals. Drug Deliv Transl Res. 2017;7(2):292–303.CrossRefPubMedGoogle Scholar
  30. 30.
    Nakarani M, Misra AK, Patel JK, Vaghani SS. Itraconazole nanosuspension for oral delivery: formulation, characterization and in vitro comparison with marketed formulation. Daru. 2010;18(2):84–90.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Singh H, Kaur M, Verma H. Optimization and evaluation of desloratadine oral strip: an innovation in paediatric medication. Sci World J. 2013;2013:395681.Google Scholar
  32. 32.
    Irfan M, Rabel S, Bukhtar Q, Qadir MI, Jabeen F, Khan A. Orally disintegrating films: a modern expansion in drug delivery system. Saudi Pharm J. 2016;24(5):537–46.CrossRefPubMedGoogle Scholar
  33. 33.
    Sakhare AV. Effect of glycerin as plasticizer in orodissloving films of losartan potassium. IJSR. 2014;3(8):772–8.Google Scholar
  34. 34.
    Ali M, Vijendar C, Kumar S, Krishnaveni J. Formulation and evaluation of fast dissolving oral films of diazepam. Aust J Pharm. 2016;4(3):1–5.Google Scholar
  35. 35.
    Shivhare UD, Bodkhe PD, Bhusari KP, Mathur VB. Formulation and evaluation of buccoadhesive films of losartan potassium. Pharm Lett. 2010;2(5):251–60.Google Scholar
  36. 36.
    Bajerski L, Rossi RC, Dias CL, Bergold AM, Froehlich PE. Development and validation of a discriminating in vitro dissolution method for a poorly soluble drug, olmesartan medoxomil: comparison between commercial tablets. AAPS PharmSciTech. 2010;11(2):637–44.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). Stability Testing of New Drug Substances and Products Q1A (R2). ICH Harmonized Tripartite Guidelines. 2003.Google Scholar
  38. 38.
    The United States Pharmacopeia and National Formulary. USP 40-NF 35. Rockville: United States Pharmacopeial Convention; 2017.Google Scholar
  39. 39.
    World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–4.CrossRefGoogle Scholar
  40. 40.
    Smith PE. Third international conference on harmonization of technical requirements for registration of pharmaceuticals for human use—a toxicologist’s perspective. Toxicol Pathol. 1996;24(4):519–28.CrossRefPubMedGoogle Scholar
  41. 41.
    Khalifa NE, Nur AO, Osman ZA. Artemether loaded ethylcellulose nanosuspensions: effects of formulation variables, physical stability and drug release profile. Int J Pharm Pharm Sci. 2017;9(6):90–6.CrossRefGoogle Scholar
  42. 42.
    Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011;63(6):456–69.CrossRefPubMedGoogle Scholar
  43. 43.
    Muller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47(1):3–19.CrossRefPubMedGoogle Scholar
  44. 44.
    Freag MS, Elnaggar YS, Abdallah OY. Development of novel polymer-stabilized diosmin nanosuspensions: in vitro appraisal and ex vivo permeation. Int J Pharm. 2013;454(1):462–71.CrossRefPubMedGoogle Scholar
  45. 45.
    Abdelbary AA, Abd-Elsalam WH, Al-Mahallawi AM. Fabrication of novel ultradeformable bilosomes for enhanced ocular delivery of terconazole: in vitro characterization, ex vivo permeation and in vivo safety assessment. Int J Pharm. 2016;513(1–2):688–96.CrossRefPubMedGoogle Scholar
  46. 46.
    Panda B, Dey N, Rao M. Development of innovative orally fast disintegrating film dosage forms: a review. Int J Pharm Sci Nanotech. 2012;5(2):1666–74.Google Scholar
  47. 47.
    Araujo J, Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int J Pharm. 2010;393(1–2):167–75.PubMedGoogle Scholar
  48. 48.
    Elsayed I, Abdelbary AA, Elshafeey AH. Nanosizing of a poorly soluble drug: technique optimization, factorial analysis, and pharmacokinetic study in healthy human volunteers. Int J Nanomedicine. 2014;9:2943–53.PubMedPubMedCentralGoogle Scholar
  49. 49.
    De Lima LS, Araujo MDM, Quináia SP, Migliorine DW, Garcia JR. Adsorption modeling of Cr, Cd and Cu on activated carbon of different origins by using fractional factorial design. Chem Eng J. 2011;166(3):881–9.CrossRefGoogle Scholar
  50. 50.
    Kumar V, Zakir F, Agarwal G, Choudhary A. Formulation and evaluation of buccal patches of venlafaxine. Int J Pharm Biol Sci. 2011;1(3):170–82.Google Scholar
  51. 51.
    Vieira MGA, da Silva MA, dos Santos LO, Beppu MM. Natural-based plasticizers and biopolymer films: a review. Eur Polym J. 2011;47(3):254–63.CrossRefGoogle Scholar
  52. 52.
    Salman ZD, Maraie NK, Alabbassi MG, Ghareeb MM. In vitro/in vivo evaluation and bioavailability study of amitriptyline hydrochloride from the optimized oral fast dissolving films. UK J Pharm Biosci. 2014;2(6):32–42.CrossRefGoogle Scholar
  53. 53.
    Jantrawut P, Chaiwarit T, Jantanasakulwong K, Brachais CH, Chambin O. Effect of plasticizer type on tensile property and in vitro indomethacin release of thin films based on low-methoxyl pectin. Polymers. 2017;9(7):289.CrossRefGoogle Scholar
  54. 54.
    Pathare YS, Hastak VS, Bajaj AN. Polymers used for fast disintegrating oral films: a review. Int J Pharm Sci Rev Res. 2013;21(1):169–78.Google Scholar
  55. 55.
    Keshavarao KP, Mudit D. K G, Anis S, N SM, Ajay K. Formulation and evaluation of mouth dissolving film containing rofecoxib. IRJP. 2011;2(3):273–8.Google Scholar
  56. 56.
    Bala R, Khanna S, Pawar P. Design optimization and in vitro-in vivo evaluation of orally dissolving strips of clobazam. J Drug Deliv. 2014;2014:392783.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Gardouh A, Ghorab M, Badawy S, Gales R. Preparation and characterization of mucoadhesive buccal film for delivery of meloxicam. Br J Pharm Res. 2013;3(4):743–66.CrossRefGoogle Scholar
  58. 58.
    Opanasopit P, Apirakaramwong A, Ngawhirunpat T, Rojanarata T, Ruktanonchai U. Development and characterization of pectinate micro/nanoparticles for gene delivery. AAPS PharmSciTech. 2008;9(1):67–74.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Agarwal V, Mishra B. Design, development, and biopharmaceutical properties of buccoadhesive compacts of pentazocine. Drug Dev Ind Pharm. 1999;25(6):701–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Sujja-areevath J, Munday DL, Cox PJ, Khan KA. Relationship between swelling, erosion and drug release in hydrophillic natural gum mini-matrix formulations. Eur J Pharm Sci. 1998;6(3):207–17.CrossRefPubMedGoogle Scholar
  61. 61.
    Shaikh MTM, Gore AA, Salunkhe KS, Chaudhari SR. Formulation development and evaluation of fast dissolving oral film of amlodipine besilate by solvent casting technique. IJUPBS. 2013;2(3):534–44.Google Scholar
  62. 62.
    Singh G, Pai RS, Devi VK. Optimization of pellets containing solid dispersion prepared by extrusion/spheronization using central composite design and desirability function. J Young Pharm. 2012;4(3):146–56.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Niazi SK. Handbook of bioequivalence testing. 2nd ed. Boca Raton: CRC Press; 2014.CrossRefGoogle Scholar
  64. 64.
    Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19(12):930–4.CrossRefGoogle Scholar
  65. 65.
    Abdelbary AA, Li X, El-Nabarawi M, Elassasy A, Jasti B. Comparison of nanomilling and coprecipitation on the enhancement of in vitro dissolution rate of poorly water-soluble model drug aripiprazole. Pharm Dev Technol. 2014;19(4):491–500.CrossRefPubMedGoogle Scholar
  66. 66.
    Mosharraf M, Nyström C. The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. Int J Pharm. 1995;122(1–2):35–47.CrossRefGoogle Scholar
  67. 67.
    Bisrat M, Nyström C. Physicochemical aspects of drug release. VIII. The relation between particle size and surface specific dissolution rate in agitated suspensions. Int J Pharm. 1988;47(1–3):223–31.CrossRefGoogle Scholar
  68. 68.
    Niebergall PJ, Milosovich G, Goyan JE. Dissolution rate studies. II. Dissolution of particles under conditions of rapid agitation. J Pharm Sci. 1963;52:236–41.CrossRefPubMedGoogle Scholar
  69. 69.
    Junghanns JU, Muller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3(3):295–309.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Moghimipour E, Ameri A, Handali S. Absorption-enhancing effects of bile salts. Molecules. 2015;20(8):14451–73.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Jihad Mahmoud Alsofany
    • 1
  • Manal Yassin Hamza
    • 1
  • Aly Ahmed Abdelbary
    • 2
    • 3
    Email author
  1. 1.Physical Properties Laboratory, Department of PharmaceuticsNational Organization for Drug Control and Research (NODCAR)GizaEgypt
  2. 2.Department of Pharmaceutics and Industrial Pharmacy, Faculty of PharmacyCairo UniversityCairoEgypt
  3. 3.Department of Pharmaceutics and Industrial Pharmacy, Faculty of PharmacyOctober 6 UniversityGizaEgypt

Personalised recommendations