AAPS PharmSciTech

, Volume 19, Issue 5, pp 2077–2086 | Cite as

Bioactivity, Safety, and Efficacy of Amphotericin B Nanomicellar Aerosols Using Sodium Deoxycholate Sulfate as the Lipid Carrier

  • Faisal Usman
  • Ruqaiya Khalil
  • Zaheer Ul-Haq
  • Titpawan Nakpheng
  • Teerapol SrichanaEmail author
Research Article


We report nanomicelles of amphotericin B (AmB) using various molar ratios of AmB and sodium deoxycholate sulfate (SDCS) for inhalation with improved stability, solubility, bioactivity, and safety. The particle sizes of all aerosolized formulations are expressed as mass median aerodynamic diameter (0.9–1.6 μm), fine particle fraction (70.3–86.5%), and geometric standard deviation (1.4–2.1) which indicated their sizes are appropriate for use as an inhaler. In vitro cytotoxicity studies conducted using respiratory and kidney cell lines demonstrated that the marketed Fungizone® was toxic to macrophage and embryonic kidney cells and cell viability decreased from 96 to 48% and from 97 to 67%, respectively when the AmB equivalent concentration was increased from 1 to 16 μg/mL. However, AmB-SDCS formulations showed no evidence of toxicity even up to 8 μg/mL compared to Fungizone®. Minimum inhibitory and fungicidal concentrations were significantly reduced against Cryptococcus neoformans, and Candida albicans. Also, antileishmanial activity significantly improved for AmB-SDCS formulations. There was an evidence of phagocytosis of the AmB-SDCS formulation by alveolar macrophages NR 8383. Molecular modeling studies suggested the role of hydrogen bonding in stabilization of the AmB-SDCS complex. This study indicated that AmB-SDCS nanomicelles can be used to design a safe and cost-effective AmB for inhalation.

Graphical abstract


amphotericin B sodium deoxycholate sulfate toxicities phagocytosis molecular modeling 



The authors also acknowledge the Computational Chemistry Unit, Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan, for the docking studies.

Funding information

This research was funded by a grant from the 2014 scholarship awards for Masters and Ph.D. studies under Thailand’s Education Hub for Southern Region of ASEAN countries (TEH-AC).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict to declare.


  1. 1.
    Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, Walsh TJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: overview of the transplant-associated infection surveillance network (TRANSNET) database. Clin Infec Dis. 2010;50:1091–100.CrossRefGoogle Scholar
  2. 2.
    Park BJ, Pappas PG, Wannemuehler KA, Alexander BD, Anaissie EJ, Andes DR, et al. Invasive non-Aspergillus mold infections in transplant recipients, United States, 2001–2006. Emerg Infect Dis. 2011;17:1855–64.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dupont B. Overview of the lipid formulations of amphotericin B. J Antimicrob Chemoth. 2002;49:31–6.CrossRefGoogle Scholar
  4. 4.
    Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs. 2013;73:919–34.CrossRefPubMedGoogle Scholar
  5. 5.
    Gallis HA, Drew RH, Pickard WW. Amphotericin B: 30 years of clinical experience. Rev Infect Dis. 1990;12:308–29.CrossRefPubMedGoogle Scholar
  6. 6.
    Ellis D. Amphotericin B: spectrum and resistance. J Antimicrob Chemoth. 2002;49:7–10.CrossRefGoogle Scholar
  7. 7.
    Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26:223–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Walsh TJ, Finberg RW, Arndt C, Hiemenz J, Schwartz C, Bodensteiner D, et al. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. New Engl J Med. 1999;340:764–71.CrossRefPubMedGoogle Scholar
  9. 9.
    Javed I, Hussain SZ, Shahzad A, Khan JM, Rehman M, Usman F, et al. Lecithin-gold hybrid nanocarriers as efficient and pH selective vehicles for oral delivery of diacerein—in-vitro and in-vivo study. Colloids Surf B Biointerfaces. 2016;141:1–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Cagnoni PJ, Walsh TJ, Prendergast MM, Bodensteiner D, Hiemenz S, Greenberg RN, et al. Pharmacoeconomic analysis of liposomal amphotericin B versus conventional amphotericin B in the empirical treatment of persistently febrile neutropenic patients. J Clic Oncol. 2000;18:2476–83.CrossRefGoogle Scholar
  11. 11.
    Scholar EM, Pratt WB. The antimicrobial drugs. Oxford: Oxford University Press; 2000.Google Scholar
  12. 12.
    Bennett JE, Dolin R, Blaser MJ. Principles and practice of infectious diseases. Amsterdam: Elsevier Health Sciences; 2014.Google Scholar
  13. 13.
    Torrado J, Espada R, Ballesteros M, Torrado-Santiago S. Amphotericin B formulations and drug targeting. J Pharm Sci. 2008;97:2405–25.CrossRefPubMedGoogle Scholar
  14. 14.
    Baginski M, Czub J. Amphotericin B and its new derivatives-mode of action. Curr Drug Metab. 2009;10:459–69.CrossRefPubMedGoogle Scholar
  15. 15.
    Kakinen A, Javed I, Faridi A, Davis TP, Ke PC. Serum albumin impedes the amyloid aggregation and hemolysis of human islet amyloid polypeptide and alpha synuclein. Biochim Biophys Acta. 2018;
  16. 16.
    Gangadhar KN, Adhikari K, Srichana T. Synthesis and evaluation of sodium deoxycholate sulfate as a lipid drug carrier to enhance the solubility, stability and safety of an amphotericin B inhalation formulation. Int J Pharm. 2014;471:430–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Sham JO-H, Zhang Y, Finlay WH, Roa WH, Löbenberg R. Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. Int J Pharm. 2004;269:457–67.CrossRefPubMedGoogle Scholar
  18. 18.
    Chuealee R, Aramwit P, Noipha K, Srichana T. Bioactivity and toxicity studies of amphotericin B incorporated in liquid crystals. Eur J Pharm Sci. 2011;43:308–17.CrossRefPubMedGoogle Scholar
  19. 19.
    US Pharmacopeial Convention, USP29-NF24. Guidline no 66: antibiotics, micorbial assays. Rockville: USP; 2006.Google Scholar
  20. 20.
    McGinnis MR, Rinaldi MG. Antifungal drugs: mechanisms of action, drug resistance, susceptibility testing, and assays of activity in biological fluids. Antibiotics in laboratory medicine. Baltimore: The Williams & Wilkins Co; 1996. p. 176–211.Google Scholar
  21. 21.
    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.CrossRefPubMedGoogle Scholar
  22. 22.
    Nikš M, Otto M. Towards an optimized MTT assay. J Immunol Methods. 1990;130:149–51.CrossRefPubMedGoogle Scholar
  23. 23.
    Edmondson JM, Armstrong LS, Martinez AO. A rapid and simple MTT-based spectrophotometric assay for determining drug sensitivity in monolayer cultures. Methods Cell Sci. 1988;11:15–7.Google Scholar
  24. 24.
    Usman F, Ul-Haq Z, Khalil R, Tinpun K, Srichana T. Pharmacologically safe nanomicelles of amphotericin B with lipids: nuclear magnetic resonance and molecular docking approach. J Pharm Sci. 2017;106:3574–82.CrossRefPubMedGoogle Scholar
  25. 25.
    Case DA, Betz RM, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, et al. AMBER. San Francisco: University of California; 2016.Google Scholar
  26. 26.
    Roe DR, Cheatham TE III. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013;9:3084–95.CrossRefPubMedGoogle Scholar
  27. 27.
    Chimera U, Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. A visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.CrossRefGoogle Scholar
  28. 28.
    Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Echeverría-Irigoyen MJ, Eraso E, Cano J, Gomáriz M, Guarro J, Quindós G. Saccharomyces cerevisiae vaginitis: microbiology and in vitro antifungal susceptibility. Mycopathologia. 2011;172:201–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Barchiesi F, Arzeni D, Compagnucci P, Di Francesco LF, Giacometti A, Scalise G. In vitro activity of five antifungal agents against clinical isolates of Saccharomyces cerevisiae. Med Mycol. 1998;36:437–40.CrossRefPubMedGoogle Scholar
  31. 31.
    Ralph E, Khazindar A, Barber K, Grant C. Comparative in vitro effects of liposomal amphotericin B, amphotericin B-deoxycholate, and free amphotericin B against fungal strains determined by using MIC and minimal lethal concentration susceptibility studies and time-kill curves. Antimicrob Agents Ch. 1991;35:188–91.CrossRefGoogle Scholar
  32. 32.
    Yu B, Okano T, Kataoka K, Kwon G. Polymeric micelles for drug delivery: solubilization and haemolytic activity of amphotericin B. J Control Release. 1998;53:131–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Rau JL. Respiratory care pharmacology. Maryland Heights: Mosby Incorporated; 2002.Google Scholar
  34. 34.
    Mitchell JP, Nagel MW, Wiersema KJ, Doyle CC. Aerodynamic particle size analysis of aerosols from pressurized metered-dose inhalers: comparison of Andersen 8-stage cascade impactor, next generation pharmaceutical impactor, and model 3321 aerodynamic particle sizer aerosol spectrometer. AAPS PharmSciTech. 2003;4:425–33.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Suarez S, Hickey AJ. Drug properties affecting aerosol behavior. Resp Care. 2000;45:652–66.Google Scholar
  36. 36.
    Javed I, Ranjha N, Mahmood K, Kashif S, Rehman M, Usman F. Drug release optimization from microparticles of poly (ε-caprolactone) and hydroxypropyl methylcellulose polymeric blends: formulation and characterization. J Drug Deliv Sci Technol. 2014;24:607–12.CrossRefGoogle Scholar
  37. 37.
    Umegawa Y, Matsumori N, Oishi T, Murata M. Amphotericin B covalent dimers with carbonyl-amino linkage: a new probe for investigating ion channel assemblies. Tetrahedron Lett. 2007;48:3393–6.CrossRefGoogle Scholar
  38. 38.
    Jung SH, Lim DH, Jung SH, Lee JE, Jeong K-S, Seong H, et al. Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur J Pharm Sci. 2009;37:313–20.CrossRefPubMedGoogle Scholar
  39. 39.
    Chavanet P, Clement C, Duong M, Buisson M, D'Athis P, Dumas M, et al. Toxicity and efficacy of conventional amphotericin B deoxycholate versus escalating doses of amphotericin B deoxycholate–fat emulsion in HIV-infected patients with oral candidosis. Clin Microbiol Infec. 1997;3:455–61.CrossRefGoogle Scholar
  40. 40.
    Moribe K, Maruyama K, Iwatsuru M. Encapsulation characteristics of nystatin in liposomes: effects of cholesterol and polyethylene glycol derivatives. Int J Pharm. 1999;188:193–202.CrossRefPubMedGoogle Scholar
  41. 41.
    Hąc-Wydro K, Dynarowicz-Łątka P. Interaction between nystatin and natural membrane lipids in Langmuir monolayers—the role of a phospholipid in the mechanism of polyenes mode of action. Biophys Chem. 2006;123:154–61.CrossRefPubMedGoogle Scholar
  42. 42.
    Bhamra R, Sa'ad A, Bolcsak LE, Janoff AS, Swenson CE. Behavior of amphotericin B lipid complex in plasma in vitro and in the circulation of rats. Antimicrob Agents Ch. 1997;41:886–92.CrossRefGoogle Scholar
  43. 43.
    Javed I, Hussain SZ, Ullah I, Khan I, Ateeq M, Shahnaz G, et al. Synthesis, characterization and evaluation of lecithin-based nanocarriers for the enhanced pharmacological and oral pharmacokinetic profile of amphotericin B. J Mater Chem B. 2015;3:8359–65.CrossRefGoogle Scholar
  44. 44.
    Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86:215–23.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hans M, Lowman A. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid St M. 2002;6:319–27.CrossRefGoogle Scholar
  46. 46.
    Mbongo N, Loiseau PM, Billion MA, Robert-Gero M. Mechanism of amphotericin B resistance inLeishmania donovani promastigotes. Antimicrobial Agent Ch. 1998;42:352–7.Google Scholar
  47. 47.
    Kanchan V, Panda AK. Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials. 2007;28:5344–57.CrossRefPubMedGoogle Scholar
  48. 48.
    Tomazic-Jezic VJ, Merritt K, Umbreit TH. Significance of the type and the size of biomaterial particles on phagocytosis and tissue distribution. J Biomed Mater Res A. 2001;55:523–9.CrossRefGoogle Scholar
  49. 49.
    Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm. 2005;298:315–22.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Faisal Usman
    • 1
  • Ruqaiya Khalil
    • 2
  • Zaheer Ul-Haq
    • 2
  • Titpawan Nakpheng
    • 1
  • Teerapol Srichana
    • 1
    • 3
    Email author
  1. 1.Drug Delivery System Excellence Centre, Department of Pharmaceutical Technology, Faculty of Pharmaceutical SciencesPrince of Songkla UniversitySongkhlaThailand
  2. 2.Computational Chemistry Unit, Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Centre for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
  3. 3.Nanotec-PSU Excellence Centre on Drug Delivery System, Department of Pharmaceutical Technology, Faculty of Pharmaceutical SciencesPrince of Songkla UniversitySongkhlaThailand

Personalised recommendations