Skip to main content
Log in

Roll Compaction and Tableting of High Loaded Metformin Formulations Using Efficient Binders

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript


Metformin has a poor tabletability and flowability. Therefore, metformin is typically wet granulated with a binder before tableting. To save production costs, it would be desirable to implement a roll compaction/dry granulation (RCDG) process for metformin instead of using wet granulation. In order to implement RCDG, the efficiency of dry binders is crucial to ensure a high drug load and suitable properties of dry granules and tablets. This study evaluates dry granules manufactured by RCDG and subsequently tableting of high metformin content formulations (≥ 87.5%). Based on previous results, fine particle grades of hydroxypropylcellulose and copovidone in different fractions were compared as dry binders. The formulations are suitable for RCDG and tableting. Furthermore, results can be connected to in-die and out-of-die compressibility analysis. The addition of 7% of dry binder is a good compromise to generate sufficient mechanical properties on the one hand, but also to save resources and ensure a high metformin content on the other hand. Hydroxypropylcellulose was more efficient in terms of granule size, tensile strength and friability. Three percent croscarmellose was added to reach the specifications of the US Pharmacopeia regarding dissolution. The final formulation has a metformin content of 87.5%. A loss in tabletability does not occur for granules compressed at different specific compaction forces, which displays a robust tensile strength of tablets independent of the granulation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others


  1. Kleinebudde P. Roll compaction/dry granulation: pharmaceutical applications. Eur J Pharm Biopharm. 2004;58(2):317–26.

    Article  PubMed  CAS  Google Scholar 

  2. Miller RW. Handbook on pharmaceutical granulation. In: Parikh DM, Parikh CK, editors. Roller compaction technology. New York: Marcel Dekker; 1997. p. 99–150.

    Google Scholar 

  3. Vervaet C, Remon JP. Continuous granulation in the pharmaceutical industry. Chem Eng Sci. 2005;60(14):3949–57.

    Article  CAS  Google Scholar 

  4. Leane M, Pitt K, Reynolds G. A proposal for a drug product manufacturing classification system (MCS) for oral solid dosage forms. Pharm Dev Technol. 2015;20(1):12–21.

    Article  PubMed  CAS  Google Scholar 

  5. Sun CC, Kleinebudde P. Mini review: mechanisms to the loss of tabletability by dry granulation. Eur J Pharm Biopharm. 2016;106:9–14.

    Article  PubMed  CAS  Google Scholar 

  6. Malkowska S, Khan KA. Effect of re-conpression on the properties of tablets prepared by dry granulation. Drug Dev Ind Pharm. 1983;9(3):331–47.

    Article  CAS  Google Scholar 

  7. Sun C, Himmelspach MW. Reduced tabletability of roller compacted granules as a result of granule size enlargement. J Pharm Sci. 2006;95(1):200–6.

    Article  PubMed  CAS  Google Scholar 

  8. Herting MG, Kleinebudde P. Studies on the reduction of tensile strength of tablets after roll compaction/dry granulation. Eur J Pharm Biopharm. 2008;70(1):372–9.

    Article  PubMed  CAS  Google Scholar 

  9. Mosig J, Kleinebudde P. Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation. J Pharm Sci. 2015;104(3):1108–18.

    Article  PubMed  CAS  Google Scholar 

  10. Mangal H, Kirsolak M, Kleinebudde P. Roll compaction/dry granulation: suitability of different binders. Int J Pharm. 2016;503(1–2):213–9.

    Article  PubMed  CAS  Google Scholar 

  11. Arndt O-R, Kleinebudde P. Influence of binder properties on dry granules and tablets. Powder Technol. 2017;

  12. Moroni A. A novel copovidone binder for dry granulation and direct-compression tableting. Pharm Technol. 2001;25(9 SUPPL):8–12.

    Google Scholar 

  13. Herting MG, Klose K, Kleinebudde P. Comparison of different dry binders for roll compaction/dry granulation. Pharm Dev Technol. 2007;12(5):525–32.

    Article  PubMed  CAS  Google Scholar 

  14. King P, Peacock I, Donnelly R. The UK prospective diabetes study (UKPDS): clinical and therapeutic implications for type 2 diabetes. Br J Clin Pharmacol. 1999;48(5):643–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. G U O Aşhar, N. Nitik, M. Adiyaman. Dry granulation process for producing tablet compositions of metformin and compositions thereof, EP 2938362 B1, Zentiva Sağlik Ürünleri San. Ve. Tic. A.Ş. 2016.

  16. Fell JT, Newton JM. Determination of tablet strength by the diametral-compression test. J Pharm Sci. 1970;59(5):688–91.

    Article  PubMed  CAS  Google Scholar 

  17. Sonnergaard JM. A critical evaluation of the Heckel equation. Int J Pharm. 1999;193(1):63–71.

    Article  PubMed  CAS  Google Scholar 

  18. Sun C, Grant DJ. Influence of elastic deformation of particles on Heckel analysis. Pharm Dev Technol. 2001;6(2):193–200.

    Article  PubMed  CAS  Google Scholar 

  19. Klevan I, Nordström J, Bauer-Brandl A, Alderborn G. On the physical interpretation of the initial bending of a Shapiro–Konopicky–Heckel compression profile. Eur J Pharm Biopharm. 2009;71(2):395–401.

    Article  PubMed  CAS  Google Scholar 

  20. Takasaki H, Yonemochi E, Ito M, Wada K, Terada K. The importance of binder moisture content in metformin HCL high-dose formulations prepared by moist aqueous granulation (MAG). Results Pharma Sci. 2015;5:1–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


The authors are grateful to, BASF SE (Germany), JRS (Germany) and Nippon Soda (Japan) for donation of raw materials. Nippon Soda funded this project.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Peter Kleinebudde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arndt, OR., Kleinebudde, P. Roll Compaction and Tableting of High Loaded Metformin Formulations Using Efficient Binders. AAPS PharmSciTech 19, 2068–2076 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: