AAPS PharmSciTech

, Volume 19, Issue 5, pp 2103–2117 | Cite as

Thermosensitive Poloxamer 407/Poly(Acrylic Acid) Hydrogels with Potential Application as Injectable Drug Delivery System

  • Wannisa Boonlai
  • Vimon Tantishaiyakul
  • Namon HirunEmail author
  • Tanatchaporn Sangfai
  • Krit Suknuntha
Research Article


Thermosensitive hydrogels are of great interest for in situ gelling drug delivery. The thermosensitive vehicle with a gelation temperature in a range of 30–36°C would be convenient to be injected as liquid and transform into gel after injection. To prepare novel hydrogels gelling near body temperature, the gelation temperature of poloxamer 407 (PX) were tailored by mixing PX with poly(acrylic acid) (PAA). The gelation behaviors of PX/PAA systems as well as the interaction mechanism were investigated by tube inversion, viscoelastic, shear viscosity, DSC, SEM, and FTIR studies. The gelation temperature of the plain PX solutions at high concentration of 18, 20, and 22% (w/w) gelled at temperature below 28°C, which is out of the suitable temperature range. Mixing PX with PAA to obtain 18 and 20% (w/w) PX with 1% (w/w) PAA increased the gelation temperature to the desired temperature range of 30–36°C. The intermolecular entanglements and hydrogen bonds between PX and PAA may be responsible for the modulation of the gelation features of PX. The mixtures behaved low viscosity liquid at room temperature with shear thinning behavior enabling their injectability and rapidly gelled at body temperature. The gel strength increased, while the pore size decreased with increasing PX concentration. Metronidazole, an antibiotic used for periodontitis, was incorporated into the matrices, and the drug did not hinder their gelling ability. The gels showed the sustained drug release characteristic. The thermosensitive PX/PAA hydrogel could be a promising injectable in situ gelling system for periodontal drug delivery.


poloxamer 407 poly(acrylic acid) thermosensitive hydrogel gelation temperature 



This work was financially supported by Walailak University through Grant Number WU60309. The authors also acknowledge the support of the Health Science Research Center and the Center for Scientific and Technological Equipments, Walailak University, for research facilities.


  1. 1.
    Tang Y, Wang X, Li Y, Lei M, Du Y, Kennedy JF, et al. Production and characterisation of novel injectable chitosan/methylcellulose/salt blend hydrogels with potential application as tissue engineering scaffolds. Carbohydr Polym. 2010;82:833–41.CrossRefGoogle Scholar
  2. 2.
    Baloglu E, Karavana SY, Senyigit ZA, Guneri T. Rheological and mechanical properties of poloxamer mixtures as a mucoadhesive gel base. Pharm Dev Technol. 2011;16:627–36.CrossRefPubMedGoogle Scholar
  3. 3.
    Kim JK, Won YW, Lim KS, Kim YH. Low-molecular-weight methylcellulose-based thermo-reversible gel/pluronic micelle combination system for local and sustained docetaxel delivery. Pharm Res. 2012;29:525–34.CrossRefPubMedGoogle Scholar
  4. 4.
    Akkari ACS, Papini JZB, Garcia GK, Franco MKKD, Cavalcanti LP, Gasperini A, et al. Poloxamer 407/188 binary thermosensitive hydrogels as delivery systems for infiltrative local anesthesia: physico-chemical characterization and pharmacological evaluation. Mater Sci Eng C Mater Biol Appl. 2016;68:299–307.CrossRefPubMedGoogle Scholar
  5. 5.
    Sangfai T, Tantishaiyakul V, Hirun N, Li L. Microphase separation and gelation of methylcellulose in the presence of gallic acid and NaCl as an in situ gel-forming drug delivery system. AAPS PharmSciTech. 2017;18:605–16.CrossRefPubMedGoogle Scholar
  6. 6.
    Perinetti G, Paolantonio M, Cordella C, D'Ercole S, Serra E, Piccolomini R. Clinical and microbiological effects of subgingival administration of two active gels on persistent pockets of chronic periodontitis patients. J Clin Periodontol. 2004;31:282–5.CrossRefGoogle Scholar
  7. 7.
    Wolf DL, Papapanou PN. The relationship between periodontal disease and systemic disease in the elderly. In: Lamster IB, Northridge ME, editors. Improving oral health for the elderly: an interdisciplinary approach. New York: Springer New York; 2008. p. 247–71.CrossRefGoogle Scholar
  8. 8.
    Chava VK, Vedula BD. Thermo-reversible green tea catechin gel for local application in chronic periodontitis: a 4-week clinical trial. J Periodontol. 2012;84:1290–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Jacob S. Global prevalence of periodontitis: a literature review. Int Arab J. Dentistry. 2012;3:26–30.Google Scholar
  10. 10.
    El-Kamel AH, Ashri LY, Alsarra IA. Micromatricial metronidazole benzoate film as a local mucoadhesive delivery system for treatment of periodontal diseases. AAPS PharmSciTech. 2007;8:E184–E94.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Pichayakorn W, Boonme P. Evaluation of cross-linked chitosan microparticles containing metronidazole for periodontitis treatment. Mater Sci Eng C Mater Biol Appl. 2013;33:1197–202.CrossRefPubMedGoogle Scholar
  12. 12.
    Joshi D, Garg T, Goyal AK, Rath G. Advanced drug delivery approaches against periodontitis. Drug Deliv. 2016;23:363–77.CrossRefPubMedGoogle Scholar
  13. 13.
    Lippens E, Swennen I, Gironès J, Declercq H, Vertenten G, Vlaminck L, et al. Cell survival and proliferation after encapsulation in a chemically modified Pluronic® F127 hydrogel. J Biomater Appl. 2013;27:828–39.CrossRefPubMedGoogle Scholar
  14. 14.
    Liu S, Bao H, Li L. Role of PPO–PEO–PPO triblock copolymers in phase transitions of a PEO–PPO–PEO triblock copolymer in aqueous solution. Eur Polym J. 2015;71:423–39.CrossRefGoogle Scholar
  15. 15.
    Liu T, Chu B. Formation of homogeneous gel-like phases by mixed triblock copolymer micelles in aqueous solution: FCC to BCC phase transition. J Appl Crystallogr. 2000;33:727–30.CrossRefGoogle Scholar
  16. 16.
    Sharma PK, Reilly MJ, Bhatia SK, Sakhitab N, Archambault JD, Bhatia SR. Effect of pharmaceuticals on thermoreversible gelation of PEO–PPO–PEO copolymers. Colloids Surf B Biointerfaces. 2008;63:229–35.CrossRefPubMedGoogle Scholar
  17. 17.
    Kim EY, Gao ZG, Park JS, Li H, Han K. rhEGF/HP-β-CD complex in poloxamer gel for ophthalmic delivery. Int J Pharm. 2002;233:159–67.CrossRefPubMedGoogle Scholar
  18. 18.
    Ahn JS, Choi HK, Cho CS. A novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of chitosan. Biomaterials. 2001;22:923–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Vrbata P, Berka P, Stránská D, Doležal P, Musilová M, Čižinská L. Electrospun drug loaded membranes for sublingual administration of sumatriptan and naproxen. Int J Pharm. 2013;457:168–76.CrossRefPubMedGoogle Scholar
  20. 20.
    Mabrouk M, Chejara DR, Mulla JAS, Badhe RV, Choonara YE, Kumar P, et al. Design of a novel crosslinked HEC-PAA porous hydrogel composite for dissolution rate and solubility enhancement of efavirenz. Int J Pharm. 2015;490:429–37.CrossRefPubMedGoogle Scholar
  21. 21.
    Pragatheeswaran AM, Chen SB. The influence of poly(acrylic acid) on micellization and gelation characteristics of aqueous Pluronic F127 copolymer system. Colloid Polym Sci. 2016;294:107–17.CrossRefGoogle Scholar
  22. 22.
    Sherif S, Bendas ER, Badawy S. The clinical efficacy of cosmeceutical application of liquid crystalline nanostructured dispersions of alpha lipoic acid as anti-wrinkle. Eur J Pharm Biopharm. 2014;86:251–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Sharma PK, Bhatia SR. Effect of anti-inflammatories on Pluronic® F127: micellar assembly, gelation and partitioning. Int J Pharm. 2004;278:361–77.CrossRefPubMedGoogle Scholar
  24. 24.
    Cai X, Luan Y, Jiang Y, Song A, Shao W, Li Z, et al. Huperzine A–phospholipid complex-loaded biodegradable thermosensitive polymer gel for controlled drug release. Int J Pharm. 2012;433:102–11.CrossRefPubMedGoogle Scholar
  25. 25.
    Xie Y, Tang J, Lu Z, Sun Z, An L. Effects of poly(propylene oxide)–poly(ethylene oxide)–poly(propylene oxide) triblock copolymer on the gelation of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) aqueous solutions. J Macromol Sci Phys. 2013;52:1183–97.CrossRefGoogle Scholar
  26. 26.
    Khodaverdi E, Tafaghodi M, Ganji F, Abnoos K, Naghizadeh H. In vitro insulin release from thermosensitive chitosan hydrogel. AAPS PharmSciTech. 2012;13:460–6.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chen Y, Luan J, Shen W, Lei K, Yu L, Ding J. Injectable and thermosensitive hydrogel containing liraglutide as a long-acting antidiabetic system. ACS Appl Mater Interfaces. 2016;8:30703–13.CrossRefPubMedGoogle Scholar
  28. 28.
    Boonlai W, Tantishaiyakul V, Hirun N, Phaisan S, Uma T. The effect of the preservative methylparaben on the thermoresponsive gelation behavior of aqueous solutions of poloxamer 407. J Mol Liq. 2017;240:622–9.CrossRefGoogle Scholar
  29. 29.
    Nazar H, Roldo M, Fatouros DG, van der Merwe SM, Tsibouklis J. Hydrogels in mucosal delivery. Ther Deliv. 2012;3:535–55.CrossRefPubMedGoogle Scholar
  30. 30.
    das Neves J, Sarmento B. Mucosal delivery of biopharmaceuticals: biology, challenges and strategies. New York: Springer; 2014.CrossRefGoogle Scholar
  31. 31.
    Jones DS, Lawlor MS, Woolfson AD. Rheological and mucoadhesive characterization of polymeric systems composed of poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone), designed as platforms for topical drug delivery. J Pharm Sci. 2003;92:995–1007.CrossRefPubMedGoogle Scholar
  32. 32.
    Maestro A, González C, Gutiérrez J. Rheological behavior of hydrophobically modified hydroxyethyl cellulose solutions: a linear viscoelastic model. J Rheol. 2002;46:127–43.CrossRefGoogle Scholar
  33. 33.
    Muñoz J, Rincón F, Carmen Alfaro M, Zapata I, de la Fuente J, Beltrán O, et al. Rheological properties and surface tension of Acacia tortuosa gum exudate aqueous dispersions. Carbohydr Polym. 2007;70:198–205.CrossRefGoogle Scholar
  34. 34.
    Liu L, Fishman ML, Hicks KB, Kende M. Interaction of various pectin formulations with porcine colonic tissues. Biomaterials. 2005;26:5907–16.CrossRefPubMedGoogle Scholar
  35. 35.
    Almomen A, Cho S, Yang CH, Li Z, Jarboe EA, Peterson CM, et al. Thermosensitive progesterone hydrogel: a safe and effective new formulation for vaginal application. Pharm Res. 2015;32:2266–79.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Li F, Liu Y, Ding Y, Xie Q. A new injectable in situ forming hydroxyapatite and thermosensitive chitosan gel promoted by Na2CO3. Soft Matter. 2014;10:2292–303.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang L, Parsons DL, Navarre C, Kompella UB. Development and in-vitro evaluation of sustained release poloxamer 407 (P407) gel formulations of ceftiofur. J Control Release. 2002;85:73–81.CrossRefPubMedGoogle Scholar
  38. 38.
    Yang Y, Wang J, Zhang X, Lu W, Zhang Q. A novel mixed micelle gel with thermo-sensitive property for the local delivery of docetaxel. J Control Release. 2009;135:175–82.CrossRefPubMedGoogle Scholar
  39. 39.
    Bhardwaj R, Blanchard J. Controlled-release delivery system for the alpha-MSH analog melanotan-I using poloxamer 407. J Pharm Sci. 1996;85(9):915–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Srivastava M, Kohli K, Ali M. Formulation development of novel in situ nanoemulgel (NEG) of ketoprofen for the treatment of periodontitis. Drug Deliv. 2016;23:154–66.CrossRefPubMedGoogle Scholar
  41. 41.
    Zupančič Š, Potrč T, Baumgartner S, Kocbek P, Kristl J. Formulation and evaluation of chitosan/polyethylene oxide nanofibers loaded with metronidazole for local infections. Eur J Pharm Sci. 2016;95:152–60.CrossRefPubMedGoogle Scholar
  42. 42.
    Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.CrossRefGoogle Scholar
  43. 43.
    Liu Y, Zhu YY, Wei G, Lu WY. Effect of carrageenan on poloxamer-based in situ gel for vaginal use: improved in vitro and in vivo sustained-release properties. Eur J Pharm Sci. 2009;37:306–12.CrossRefPubMedGoogle Scholar
  44. 44.
    Wu H, Liu Z, Peng J, Li L, Li N, Li J, et al. Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery. Int J Pharm. 2011;410:31–40.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12:263–71.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Boucenna I, Royon L, Colinart P. Effect of laponite clay particles on thermal and rheological properties of Pluronic triblock copolymer. J Therm Anal Calorim. 2009;98:119–23.CrossRefGoogle Scholar
  47. 47.
    White JC, Saffer EM, Bhatia SR. Alginate/PEO-PPO-PEO composite hydrogels with thermally-active plasticity. Biomacromolecules. 2013;14:4456–64.CrossRefPubMedGoogle Scholar
  48. 48.
    Scherlund M, Brodin A, Malmsten M. Micellization and gelation in block copolymer systems containing local anesthetics. Int J Pharm. 2000;211:37–49.CrossRefPubMedGoogle Scholar
  49. 49.
    Hädicke A, Blume A. Interactions of Pluronic block copolymers with lipid vesicles depend on lipid phase and Pluronic aggregation state. Colloid Polym Sci. 2015;293:267–76.CrossRefGoogle Scholar
  50. 50.
    Hirun N, Tantishaiyakul V, Pichayakorn W. Effect of Eriochrome Black T on the gelatinization of xyloglucan investigated using rheological measurement and release behavior of Eriochrome Black T from xyloglucan gel matrices. Int J Pharm. 2010;388:196–201.CrossRefPubMedGoogle Scholar
  51. 51.
    Pritchard CD, O’Shea TM, Siegwart DJ, Calo E, Anderson DG, Reynolds FM, et al. An injectable thiol-acrylate poly(ethylene glycol) hydrogel for sustained release of methylprednisolone sodium succinate. Biomaterials. 2011;32:587–97.CrossRefPubMedGoogle Scholar
  52. 52.
    Caicco MJ, Zahir T, Mothe AJ, Ballios BG, Kihm AJ, Tator CH, et al. Characterization of hyaluronan–methylcellulose hydrogels for cell delivery to the injured spinal cord. J Biomed Mater Res A. 2013;101:1472–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Liu L, Tang X, Wang Y, Guo S. Smart gelation of chitosan solution in the presence of NaHCO3 for injectable drug delivery system. Int J Pharm. 2011;414:6–15.CrossRefPubMedGoogle Scholar
  54. 54.
    Jin R, Moreira Teixeira LS, Krouwels A, Dijkstra PJ, van Blitterswijk CA, Karperien M, et al. Synthesis and characterization of hyaluronic acid–poly(ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater. 2010;6:1968–77.CrossRefPubMedGoogle Scholar
  55. 55.
    Lippacher A, Müller RH, Mäder K. Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. Int J Pharm. 2001;214:9–12.CrossRefPubMedGoogle Scholar
  56. 56.
    Mishraki-Berkowitz T, Aserin A, Garti N. Structural properties and release of insulin-loaded reverse hexagonal (HII) liquid crystalline mesophase. J Colloid Interface Sci. 2017;486:184–93.CrossRefPubMedGoogle Scholar
  57. 57.
    Hao J, Zhao J, Zhang S, Tong T, Zhuang Q, Jin K, et al. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery. Colloids Surf B Biointerfaces. 2016;147:376–86.CrossRefPubMedGoogle Scholar
  58. 58.
    Wang GH, Zhang LM. Manipulating formation and drug-release behavior of new sol-gel silica matrix by hydroxypropyl guar gum. J Phys Chem B. 2007;111:10665–70.CrossRefPubMedGoogle Scholar
  59. 59.
    Thorgeirsdóttir TÓ, Kjøniksen AL, Knudsen KD, Kristmundsdóttir T, Nyström B. Viscoelastic and structural properties of pharmaceutical hydrogels containing monocaprin. Eur J Pharm Biopharm. 2005;59:333–42.CrossRefPubMedGoogle Scholar
  60. 60.
    Mezger TG. The rheology handbook: for users of rotational and oscillatory rheometers. 4th ed. Hannover: Vincentz Network; 2014.Google Scholar
  61. 61.
    Escobar-Chávez JJ, Merino V, Díez-Sales O, Nácher-Alonso A, Ganem-Quintanar A, Herráez M, et al. Transdermal nortriptyline hydrocloride patch formulated within a chitosan matrix intended to be used for smoking cessation. Pharm Dev Technol. 2011;16:162–9.CrossRefPubMedGoogle Scholar
  62. 62.
    Wang C, Han W, Tang X, Zhang H. Evaluation of drug release profile from patches based on styrene-isoprene-styrene block copolymer: the effect of block structure and plasticizer. AAPS PharmSciTech. 2012;13:556–67.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Behera B, Sagiri SS, Singh VK, Pal K, Anis A. Mechanical properties and delivery of drug/probiotics from starch and non-starch based novel bigels: a comparative study. Starke. 2014;66:865–79.CrossRefGoogle Scholar
  64. 64.
    Chen JP, Cheng TH. Preparation and evaluation of thermo-reversible copolymer hydrogels containing chitosan and hyaluronic acid as injectable cell carriers. Polymer. 2009;50:107–16.CrossRefGoogle Scholar
  65. 65.
    Barradas TN, Lopes LMA, Ricci-Júnior E, de Holanda e Silva KG, Mansur CRE. Development and characterization of micellar systems for application as insect repellents. Int J Pharm. 2013;454:633–40.CrossRefPubMedGoogle Scholar
  66. 66.
    Prud'homme RK, Wu G, Schneider DK. Structure and rheology studies of poly(oxyethylene–oxypropylene–oxyethylene) aqueous solution. Langmuir. 1996;12:4651–9.CrossRefGoogle Scholar
  67. 67.
    Sisko AW. The flow of lubricating greases. Ind Eng Chem. 1958;50:1789–92.CrossRefGoogle Scholar
  68. 68.
    Lonetti B, Fratini E, Chen SH, Baglioni P. Viscoelastic and small angle neutron scattering studies of concentrated protein solutions. Phys Chem Chem Phys. 2004;6:1388–95.CrossRefGoogle Scholar
  69. 69.
    León-Martínez FM, Cano-Barrita PFJ, Lagunez-Rivera L, Medina-Torres L. Study of nopal mucilage and marine brown algae extract as viscosity-enhancing admixtures for cement based materials. Constr Build Mater. 2014;53:190–202.CrossRefGoogle Scholar
  70. 70.
    Calero N, Alfaro MC, Lluch MÁ, Berjano M, Muñoz J. Rheological behavior and structure of a commercial esterquat surfactant aqueous system. Chem Eng Technol. 2010;33:481–8.CrossRefGoogle Scholar
  71. 71.
    Mu JH, Li GZ, Jia XL, Wang HX, Zhang GY. Rheological properties and microstructures of anionic micellar solutions in the presence of different inorganic salts. J Phys Chem B. 2002;106:11685–93.CrossRefGoogle Scholar
  72. 72.
    Bonacucina G, Spina M, Misici-Falzi M, Cespi M, Pucciarelli S, Angeletti M, et al. Effect of hydroxypropyl β-cyclodextrin on the self-assembling and thermogelation properties of Poloxamer 407. Eur J Pharm Sci. 2007;32:115–22.CrossRefPubMedGoogle Scholar
  73. 73.
    Yoo MK, Kweon HY, Lee KG, Lee HC, Cho CS. Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poloxamer macromer. Int J Biol Macromol. 2004;34:263–70.CrossRefPubMedGoogle Scholar
  74. 74.
    Su YL, Liu HZ, Wang J, Chen JY. Study of salt effects on the micellization of PEO–PPO–PEO block copolymer in aqueous solution by FTIR spectroscopy. Langmuir. 2002;18:865–71.CrossRefGoogle Scholar
  75. 75.
    Su YL, Wang J, Liu HZ. FTIR spectroscopic investigation of effects of temperature and concentration on PEO–PPO–PEO block copolymer properties in aqueous solutions. Macromolecules. 2002;35:6426–31.CrossRefGoogle Scholar
  76. 76.
    Innocenzi P, Malfatti L, Piccinini M, Marcelli A. Evaporation-induced crystallization of pluronic F127 studied in situ by time-resolved infrared spectroscopy. J Phys Chem A. 2010;114:304–8.CrossRefPubMedGoogle Scholar
  77. 77.
    Rangabhatla ASL, Tantishaiyakul V, Oungbho K, Boonrat O. Fabrication of pluronic and methylcellulose for etidronate delivery and their application for osteogenesis. Int J Pharm. 2016;499:110–8.CrossRefPubMedGoogle Scholar
  78. 78.
    Guan Y, Zhang Y, Zhou T, Zhou S. Stability of hydrogen-bonded hydroxypropylcellulose/poly(acrylic acid) microcapsules in aqueous solutions. Soft Matter. 2009;5:842–9.CrossRefGoogle Scholar
  79. 79.
    Brako F, Raimi-Abraham B, Mahalingam S, Craig DQM, Edirisinghe M. Making nanofibres of mucoadhesive polymer blends for vaginal therapies. Eur Polym J. 2015;70:186–96.CrossRefGoogle Scholar
  80. 80.
    Daniliuc L, De Kesel C, David C. Intermolecular interactions in blends of poly(vinyl alcohol) with poly(acrylic acid)—1. FTIR and DSC studies. Eur Polym J. 1992;28:1365–71.CrossRefGoogle Scholar
  81. 81.
    Kaczmarek H, Szalla A, Kamińska A. Study of poly(acrylic acid)–poly(vinylpyrrolidone) complexes and their photostability. Polymer. 2001;42:6057–69.CrossRefGoogle Scholar
  82. 82.
    Barakat NS. In vitro and in vivo characteristics of a thermogelling rectal delivery system of etodolac. AAPS PharmSciTech. 2009;10:724–31.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Park H, Robinson JR. Mechanisms of mucoadhesion of poly(acrylic acid) hydrogels. Pharm Res. 1987;4:457–64.CrossRefPubMedGoogle Scholar
  84. 84.
    Kojarunchitt T, Hook S, Rizwan S, Rades T, Baldursdottir S. Development and characterisation of modified poloxamer 407 thermoresponsive depot systems containing cubosomes. Int J Pharm. 2011;408:20–6.CrossRefPubMedGoogle Scholar
  85. 85.
    Kjøniksen AL, Calejo MT, Zhu K, Nyström B, Sande SA. Stabilization of pluronic gels in the presence of different polysaccharides. J Appl Polym Sci. 2014;131Google Scholar
  86. 86.
    Saxena A, Kaloti M, Bohidar HB. Rheological properties of binary and ternary protein–polysaccharide co-hydrogels and comparative release kinetics of salbutamol sulphate from their matrices. Int J Biol Macromol. 2011;48:263–70.CrossRefPubMedGoogle Scholar
  87. 87.
    Thakur VK, Thakur MK. Handbook of polymers for pharmaceutical technologies: biodegradable polymers. Hoboken: Wiley; 2015.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Wannisa Boonlai
    • 1
  • Vimon Tantishaiyakul
    • 2
  • Namon Hirun
    • 1
    • 3
    Email author
  • Tanatchaporn Sangfai
    • 1
  • Krit Suknuntha
    • 2
  1. 1.School of PharmacyWalailak UniversityNakhon Si ThammaratThailand
  2. 2.Center of Excellence for Drug Delivery System and Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical SciencesPrince of Songkla UniversityHat-YaiThailand
  3. 3.Drug and Cosmetics Excellence CenterWalailak UniversityNakhon Si ThammaratThailand

Personalised recommendations