AAPS PharmSciTech

, Volume 19, Issue 4, pp 1818–1826 | Cite as

Zein Microneedles for Localized Delivery of Chemotherapeutic Agents to Treat Breast Cancer: Drug Loading, Release Behavior, and Skin Permeation Studies

  • Shubhmita Bhatnagar
  • Pooja Kumari
  • Srijanaki Paravastu Pattarabhiran
  • Venkata Vamsi Krishna Venuganti
Research Article


Localized delivery of chemotherapeutic agents to treat breast cancer could limit their adverse drug reactions. The aim of this study was to investigate the influence of physico-chemical properties of chemotherapeutic agents in their loading, release behavior, and skin permeation using microneedles. Zein microneedles were fabricated using the micromolding technique containing 36 microneedles in a 1-cm2 area. These microneedles were loaded with two anti-breast cancer drugs, tamoxifen and gemcitabine, having different water solubilities. Entrapment or surface coating of chemotherapeutic agents in zein microneedles was optimized to achieve greater loading efficiency. The greatest loading achieved was 607 ± 21 and 1459 ± 74 μg for tamoxifen and gemcitabine using the entrapment approach, respectively. Skin permeation studies in excised porcine skin showed that the coating on microneedles approach results in greater skin deposition for tamoxifen; while the poke-and-patch approach would provide greater skin permeation for gemcitabine. Taken together, it can be concluded that different loading strategies and skin penetration approaches have to be studied for delivery of small molecules using polymeric microneedles.


tamoxifen gemcitabine zein microneedles drug release skin permeation 



This work was financially supported by BITS Pilani. The texture analyzer and multimode plate reader were procured using a grant from the Department of Science and Technology—Fund for Improvement of Science and Technology infrastructure (DST FIST).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

12249_2018_1004_MOESM1_ESM.docx (186 kb)
Figure S1 (DOCX 185 kb)


  1. 1.
    Wang C, Ye Y, Gu Z. Local delivery of checkpoints antibodies. Hum Vaccin Immunother. 2017;13(1):245–8. Scholar
  2. 2.
    Junwei L, Mingtao Z, Shan H, Chunyi T. Microneedle patches as drug and vaccine delivery platform. Curr Med Chem. 2017;24(22):2413–22. Google Scholar
  3. 3.
    Bhatnagar S, Dave K, Venuganti VVK. Microneedles in the clinic. J Control Release. 2017;260:164–82. CrossRefPubMedGoogle Scholar
  4. 4.
    Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547–68. Scholar
  5. 5.
    Widera G, Johnson J, Kim L, Libiran L, Nyam K, Daddona PE, et al. Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system. Vaccine. 2006;24(10):1653–64. Scholar
  6. 6.
    Bediz B, Korkmaz E, Khilwani R, Donahue C, Erdos G, Falo LD Jr, et al. Dissolvable microneedle arrays for intradermal delivery of biologics: fabrication and application. Pharm Res. 2014;31(1):117–35. Scholar
  7. 7.
    Mikszta JA, Alarcon JB, Brittingham JM, Sutter DE, Pettis RJ, Harvey NG. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med. 2002;8(4):415–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Indermun S, Luttge R, Choonara YE, Kumar P, du Toit LC, Modi G, et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release. 2014;185:130–8. Scholar
  9. 9.
    Ita K. Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics. 2015;7(3):90–105. Scholar
  10. 10.
    Tuan-Mahmood TM, McCrudden MT, Torrisi BM, McAlister E, Garland MJ, Singh TR, et al. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci. 2013;50(5):623–37. Scholar
  11. 11.
    Bhatnagar S, Chawla SR, Kulkarni OP, Venuganti VVK. Zein microneedles for transcutaneous vaccine delivery: fabrication, characterization, and in vivo evaluation using ovalbumin as the model antigen. ACS Omega. 2017;2(4):1321–32. Scholar
  12. 12.
    Donnelly RF, Majithiya R, Singh TR, Morrow DI, Garland MJ, Demir YK, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res. 2011;28(1):41–57. Scholar
  13. 13.
    Lee JW, Han M-R, Park J-H. Polymer microneedles for transdermal drug delivery. J Drug Target. 2013;21(3):211–23. Scholar
  14. 14.
    Park JH, Allen MG, Prausnitz MR. Polymer microneedles for controlled-release drug delivery. Pharm Res. 2006;23(5):1008–19. Scholar
  15. 15.
    Zhu Z, Luo H, Lu W, Luan H, Wu Y, Luo J, et al. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide. Pharm Res. 2014;31(12):3348–60. Scholar
  16. 16.
    Milewski M, Brogden NK, Stinchcomb AL. Current aspects of formulation efforts and pore lifetime related to microneedle treatment of skin. Expert Opin Drug Deliv. 2010;7(5):617–29. Scholar
  17. 17.
    Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Rep. 2016;104(Supplement C):1–32. CrossRefGoogle Scholar
  18. 18.
    Gill HS, Prausnitz MR. Coating formulations for microneedles. Pharm Res. 2007;24(7):1369–80. Scholar
  19. 19.
    Donnelly RF, Raj Singh TR, Woolfson AD. Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv. 2010;17(4):187–207. Scholar
  20. 20.
    Shukla R, Cheryan M. Zein: the industrial protein from corn. Ind Crop Prod. 2001;13(3):171–92. CrossRefGoogle Scholar
  21. 21.
    Gao S, Singh J. In vitro percutaneous absorption enhancement of a lipophilic drug tamoxifen by terpenes. J Control Release. 1998;51(2):193–9. CrossRefPubMedGoogle Scholar
  22. 22.
    Fontana G, Maniscalco L, Schillaci D, Cavallaro G, Giammona G. Solid lipid nanoparticles containing tamoxifen characterization and in vitro antitumoral activity. Drug delivery. 2005;12(6):385–92. Scholar
  23. 23.
    Heel RC, Brogden RN, Speight TM, Avery GS. Tamoxifen: a review of its pharmacological properties and therapeutic use in the treatment of breast cancer. Drugs. 1978;16(1):1–24. Scholar
  24. 24.
    Chawla JS, Amiji MM. Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm. 2002;249(1):127–38. CrossRefPubMedGoogle Scholar
  25. 25.
    Jena SK, Singh C, Dora CP, Suresh S. Development of tamoxifen-phospholipid complex: novel approach for improving solubility and bioavailability. Int J Pharm. 2014;473:1):1–9. CrossRefPubMedGoogle Scholar
  26. 26.
    Aapro MS, Martin C, Hatty S. Gemcitabine—a safety review. Anti-Cancer Drugs. 1998;9(3):191–202.CrossRefPubMedGoogle Scholar
  27. 27.
    Trickler WJ, Khurana J, Nagvekar AA, Dash AK. Chitosan and glyceryl monooleate nanostructures containing gemcitabine: potential delivery system for pancreatic cancer treatment. AAPS PharmSciTech. 2010;11(1):392–401. Scholar
  28. 28.
    Poulin P, Chen Y-H, Ding X, Gould SE, Hop CE, Messick K, et al. Prediction of drug distribution in subcutaneous xenografts of human tumor cell lines and healthy tissues in mouse: application of the tissue composition-based model to antineoplastic drugs. J Pharm Sci. 104(4):1508–21.
  29. 29.
    Joshi G, Kumar A, Sawant K. Enhanced bioavailability and intestinal uptake of gemcitabine HCl loaded PLGA nanoparticles after oral delivery. Eur J Pharm Sci. 2014;60(Supplement C):80–9. Scholar
  30. 30.
    Chitkara D, Kumar N. BSA-PLGA-based core-shell nanoparticles as carrier system for water-soluble drugs. Pharm Res. 2013;30(9):2396–409. Scholar
  31. 31.
    Osborne TB. Classification of vegetable proteins. In: Osborne TB, editor. The vegetable proteins. New York: Longmans, Green and Co.; 1924. p. 25–35.Google Scholar
  32. 32.
    Coleman CE, Larkins BA. The prolamins of maize. In: Shewry PR, Casey R, editors. Seed proteins. The Netherlands: Kluwer Academic Publishers; 1999. p. 109–39.CrossRefGoogle Scholar
  33. 33.
    Thompson GA, Larkins BA. Structural elements regulating zein gene expression. BioEssays. 1989;10(4):108–13. Scholar
  34. 34.
    Wilson CM. Proteins of the kernel. In: Watson SA, Ramstad PE, editors. Corn: chemistry and technology. St. Paul: Am. Assoc. Cereal Chem; 1987. p. 273–310.Google Scholar
  35. 35.
    Paliwal R, Palakurthi S. Zein in controlled drug delivery and tissue engineering. J Control Release. 2014;189:108–22.CrossRefPubMedGoogle Scholar
  36. 36.
    Jane J, Lim S, Paetau I, Spence K, Wang S. Biodegradable plastics made from agricultural biopolymers. ACS Publications; 1994.Google Scholar
  37. 37.
    Lawton JW. Zein: a history of processing and use. Cereal Chem J. 2002;79(1):1–18. Scholar
  38. 38.
    Clemons M, Danson S, Howell A. Tamoxifen (‘Nolvadex’): a review: antitumour treatment. Cancer Treat Rev. 2002;28(4):165–80.CrossRefPubMedGoogle Scholar
  39. 39.
    Bhatia A, Kumar R, Katare OP. Tamoxifen in topical liposomes: development, characterization and in-vitro evaluation. J Pharm Pharm Sci. 2004;7(2):252–9.PubMedGoogle Scholar
  40. 40.
    Manosroi A, Kongkaneramit L, Manosroi J. Stability and transdermal absorption of topical amphotericin B liposome formulations. Int J Pharm. 2004;270(1):279–86. CrossRefPubMedGoogle Scholar
  41. 41.
    Ng S-F, Rouse JJ, Sanderson FD, Meidan V, Eccleston GM. Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS PharmSciTech. 2010;11(3):1432–41. Scholar
  42. 42.
    Williams FM. In vitro studies—how good are they at replacing in vivo studies for measurement of skin absorption? Environ Toxicol Pharmacol. 2006;21(2):199–203. CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Shubhmita Bhatnagar
    • 1
  • Pooja Kumari
    • 1
  • Srijanaki Paravastu Pattarabhiran
    • 1
  • Venkata Vamsi Krishna Venuganti
    • 1
  1. 1.Department of PharmacyBirla Institute of Technology and Science (BITS) PilaniHyderabadIndia

Personalised recommendations