AAPS PharmSciTech

, Volume 19, Issue 5, pp 2058–2067 | Cite as

Development of Microemulsions and Microemulgels for Enhancing Transdermal Delivery of Kaempferia parviflora Extract

  • Worranan Rangsimawong
  • Paisit Wattanasri
  • Prasopchai Tonglairoum
  • Prasert Akkaramongkolporn
  • Theerasak Rojanarata
  • Tanasait Ngawhirunpat
  • Praneet OpanasopitEmail author
Research Article


The purpose of this research was to develop microemulsions (ME) and microemulgels (MG) for enhancing transdermal delivery of Kaempferia parviflora (KP) extract. The methoxyflavones were used as markers. Various formulations of ME and MG containing 10% w/v KP extract were prepared, and the in vitro skin permeation and deposition were investigated. The potential ME system containing oleic acid (5% w/v), Tween 20 (20% w/v), PG (40% w/v), and water (35% w/v) was successfully formulated. ME with 10% w/v limonene (ME-L10%) showed higher methoxyflavones flux than ME-L5%, ME-L1%, ME without limonene, and KP extract in water, respectively. ME-L10% was selected for adding a gelling agent to form microemulgels (MG-L10%). However, the high viscosity of the gel formulation might control the diffusion of the compound from gel layer into the skin. Therefore, the liquid formulation provided potential ME droplets to deliver KP extract through the skin. Limonene also plays an effective role on the skin permeation, in which the histological image of the skin treated with ME-L10% exhibited larger space of each flattened keratinocyte layer in the stratum corneum compared to the skin treated with KP extract in water. Moreover, ME-L10% showed good stability. Therefore, ME-L10% was a potential formulation for improving transdermal delivery of KP extract.


Kaempferia parviflora microemulsions microemulgels limonene skin permeation 



The authors would like to acknowledge the Faculty of Pharmacy, Silpakorn University, the Thailand Research Funds (IRN58W0004), and the National Natural Science Foundation of China (NSFC 81561148012) for the financial supports and Bangkok Lab & Cosmetic Co., Ltd., for Kaempferia parviflora (KP) extract and standard methoxyflavones.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

12249_2018_1003_MOESM1_ESM.docx (62 kb)
ESM 1 (DOCX 62 kb)


  1. 1.
    Tewtrakul S, Subhadhirasakul S. Effects of compounds from Kaempferia parviflora on nitric oxide, prostaglandin E2 and tumor necrosis factor-alpha productions in RAW264.7 macrophage cells. J Ethnopharmacol. 2008;120(1):81–4.CrossRefPubMedGoogle Scholar
  2. 2.
    Chuthaputti A. Krachai Dam (Kaemferiaparviflora Wall. ex Baker): a champion herbal product. J Thai Trad Alter Med. 2013;11(1):4–16.Google Scholar
  3. 3.
    Sutthanut K, Sripanidkulchai B, Yenjai C, Jay M. Simultaneous identification and quantitation of 11 flavonoids constituents in Kaempferia parviflora by gas chromatography. J Chromatogr A. 2007;1143(1–2):227–33.CrossRefPubMedGoogle Scholar
  4. 4.
    Sutthanut K, Lu X, Sripanidkulchai B, Yenjai C, Jay M. Solid liquid nanoparticles for transdermal delivery of Kaempferia parviflora extracts. J Biomed Nanotechnol. 2009;5(2):224–32.CrossRefPubMedGoogle Scholar
  5. 5.
    Mekjaruskul C, Jay M, Sripanidkulchai B. Pharmacokinetics, tissue distribution, excretion, and metabolite identification of methoxyflavones in Kaempferia parviflora extract in rats. Drug Metab Dispos. 2012;40(12):2342–53.CrossRefPubMedGoogle Scholar
  6. 6.
    Sutthanut K, Lu X, Jay M, Sripanidkulchai B. Solid lipid nanoparticles for topical administration of Kaempferia parviflora extracts. J Biomed Nanotechnol. 2009;5(2):224–32.CrossRefPubMedGoogle Scholar
  7. 7.
    Mekjaruskul C, Yang YT, Leed MG, Sadgrove MP, Jay M, Sripanidkulchai B. Novel formulation strategies for enhancing oral delivery of methoxyflavones in Kaempferia parviflora by SMEDDS or complexation with 2-hydroxypropyl-beta-cyclodextrin. Int J Pharm. 2013;445(1–2):1–11.CrossRefPubMedGoogle Scholar
  8. 8.
    Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2012;64(supplement):175–93.CrossRefGoogle Scholar
  9. 9.
    Tavano L, Alfano P, Muzzalupo R, Cindio BD. Niosomes vs microemulsions: new carriers for topical delivery of capsaicin. Colloids Surf B Biointerfaces. 2011;87(2):333–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Liu C, Chang FY, Hung DK. Terpene microemulsions for transdermal curcumin delivery: effects of terpenes and cosurfactants. Colloids Surf B Biointerfaces. 2011;82(1):63–70.CrossRefPubMedGoogle Scholar
  11. 11.
    Patel H, Barot BS, Parejiya PB, Shelat PK, Shukla A. Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo: ex vivo permeation and skin irritation studies. Colloids Surf B Biointerfaces. 2013;102:86–94.CrossRefPubMedGoogle Scholar
  12. 12.
    Fouad S, Basalious EB, EL-Nabarawi MA, Tayel SA. Microemulsion and poloxamer microemulsion-based gel for sustained transdermal delivery of diclofenac epolamine using in-skin drug depot: in vitro/in vivo evaluation. Int J Pharm. 2013;453:569–78.CrossRefPubMedGoogle Scholar
  13. 13.
    Sutthanut K, Sripanidkulchai B, Yenjai C, Jay M. Simultaneous identification and quantitation of 11 flavonoid constituents in Kaempferia parviflora by gas chromatography. J Chromatogr A. 2007;1143(1):227–33.CrossRefPubMedGoogle Scholar
  14. 14.
    Abu-Elayazid SK, Kassem AA, Samy AM, Gomaa ME. Evaluation of skin permeation and pharmacological effects of tenoxicam nanoemulsion in topical formulations. Asian J Pharm Health Sci. 2011;1(3):99–105.Google Scholar
  15. 15.
    Tuntiyasawasdikul S, Limpongsa E, Jaipakdee N, Sripanidkulchai B. Transdermal permeation of Kaempferia parviflora methoxyflavones from isopropylmyristate-based vehicles. AAPS PharmSciTech. 2014;15:947–55.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kogan A, Garti N. Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interf Sci. 2006;123-126:369–85.CrossRefGoogle Scholar
  17. 17.
    Idrees MA, Rahman NU, Ahmad S, Ali MY, Ahmad I. Enhance transdermal delivery of flurbiprofen via microemulsions: effects of different types of surfactants and cosurfactants. DARU J Pharm Sci. 2011;19(6):433–9.Google Scholar
  18. 18.
    Subongkot T, Duangjit S, Rojanarata T, Opanasopit P, Ngawhirunpat T. Ultradeformable liposomes with terpenes for delivery of hydrophilic compound. J Liposome Res. 2012;22(3):254–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Ngawhirunpat T, Worachun N, Opanasopit P, Rojanarata T, Panomsuk S. Cremophor RH40-PEG 400 microemulsions as transdermal drug delivery carrier for ketoprofen. Pharm Dev Technol. 2013;18(4):798–803.CrossRefPubMedGoogle Scholar
  20. 20.
    Okabe H, Takayama K, Nagai T, et al. Effect of d-limonene and related compounds on the percutaneous absorption of indomethacin. Drug Des Deliv. 1989;4:313–21.PubMedGoogle Scholar
  21. 21.
    Aqil M, Ahad A, Sultana Y, Ali A. Status of terpenes as skin penetration enhancers. Drug Discov Today. 2007;12:1061–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Femenía-Font A, Balaguer-Fernández C, Merino V, Rodilla V, López-Castellano A. Effect of chemical enhancers on the in vitro percutaneous absorption of sumatriptan succinate. Eur J Pharm Biopharm. 2005;61(1):50–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Mehta SK, Kaur G. Microemulsions: thermodynamic and dynamic properties. In: Tadashi M, editor. Thermodynamics: InTech; 2011. p. 382–409.Google Scholar
  24. 24.
    Hoffman A. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64(1):18–23.CrossRefGoogle Scholar
  25. 25.
    Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2004;56(5):603–18.CrossRefPubMedGoogle Scholar
  26. 26.
    Lu WC, Chiang BH, Huang DW, Li PH. Skin permeation of D-limonene-based nanoemulsions as a transdermal carrier prepared by ultrasonic emulsification. Ultrason Sonochem. 2014;21(2):826–32.CrossRefPubMedGoogle Scholar
  27. 27.
    Cornwell PA, Barry BW. Sesquiterpene components of volatile oils as skin penetration enhancers for the hydrophilic permeant 5-fluorouracil. J Pharm Pharmacol. 1994;46(4):261–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Gannu R, Palem CR, Yamsani VV, Yamsani SK, Yamsani MR. Enhanced bioavailability of lacidipine via microemulsion based transdermal gels: formulation optimization, ex vivo and in vivo characterization. Int J Pharm. 2011;388(1–2):231–41.Google Scholar
  29. 29.
    Hathout R, Woodman TJ, Mansour S, Mortada ND, Geneidi AS, Guy RH. Microemulsion formulations for the transdermal delivery of testosterone. Eur J Pharm Sci. 2010;40(3):188–96.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Worranan Rangsimawong
    • 1
  • Paisit Wattanasri
    • 1
    • 2
  • Prasopchai Tonglairoum
    • 1
  • Prasert Akkaramongkolporn
    • 1
  • Theerasak Rojanarata
    • 1
  • Tanasait Ngawhirunpat
    • 1
  • Praneet Opanasopit
    • 1
    Email author
  1. 1.Faculty of PharmacySilpakorn UniversityNakhon PathomThailand
  2. 2.Bangkok Lab & Cosmetic Co., Ltd.RatchaburiThailand

Personalised recommendations