Safety and Antioxidant Efficacy Profiles of Rutin-Loaded Ethosomes for Topical Application

  • Thalita Marcílio Cândido
  • Camila Areias De Oliveira
  • Maíra Bueno Ariede
  • Maria Valéria Robles Velasco
  • Catarina Rosado
  • André Rolim Baby
Research Article
  • 24 Downloads

Abstract

Topical application of dermocosmetics containing antioxidant and/or the intake of antioxidants through diet or supplementation are remarkable tools in an attempt to slow down some of the harmful effects of free radicals. Rutin is a strong antioxidant compound used in food and pharmaceutical industries. It was established that rutin presents a low skin permeation rate, a property that could be considered an inconvenience to the satisfactory action for a dermocosmetic formulation to perform its antioxidant activity onto the skin. Therefore, it is indispensable to improve its delivery, aiming at increasing its antioxidant capacity in deeper layers of the epidermis, being a possibility to associate the rutin to liposomal vesicles, such as ethosomes. Thus, in this work, the pre-clinical safety of rutin-loaded ethosomes was investigated employing an in vitro method, and the clinical safety and efficacy were also assessed. Rutin-loaded ethosomes were efficaciously obtained in a nanoscale dimension with a relevant bioactive compound loading (80.2%) and provided antioxidant in vitro activity in comparison with the blank sample. Pre-clinical and clinical safety assays assured the innocuous profile of the rutin-loaded ethosomes. The ethosomes containing the bioactive compound accomplished a more functional delivery system profile, since in the tape stripping assay, the deeper layers presented higher rutin amounts than the active delivered in its free state. However, the ex vivo antioxidant efficacy test detected no positive antioxidant activity from the rutin-loaded ethosomes, even though the in vitro assay demonstrated an affirmative antioxidant action.

KEY WORDS

Ethosomes Rutin Antioxidant activity Safety Tape stripping 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; process number 2012/04435-9) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

References

  1. 1.
    Barreiros ALBS, David JM, David JP. Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo. Quim Nova. 2006;29(1):113–23.CrossRefGoogle Scholar
  2. 2.
    Han RM, Zhang JP, Skibsted LH. Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules. 2012;17(2):2140–60.CrossRefPubMedGoogle Scholar
  3. 3.
    Liang R, Liu Y, Fu L-M, Ai X-C, Zhang J-P, Skibsted LH. Antioxidants and physical integrity of lipid bilayers under oxidative stress. J Agric Food Chem. 2012;60(41):10331–6.CrossRefPubMedGoogle Scholar
  4. 4.
    da Silva WJM, Ferrari CKB. Metabolismo mitocondrial, radicais livres e envelhecimento. Rev Bras Geriatr e Gerontol. 2011;14(3):441–51.CrossRefGoogle Scholar
  5. 5.
    Sander CS, Chang H, Hamm F, Elsner P, Thiele JJ. Role of oxidative stress and the antioxidant network in cutaneous carcinogenesis. Int J Dermatol. 2004;43(5):326–35.CrossRefPubMedGoogle Scholar
  6. 6.
    Kohen R. Skin antioxidants: their role in aging and in oxidative stress—new approaches for their evaluation. Biomed Pharmacother. 1999;53(4):181–92.CrossRefPubMedGoogle Scholar
  7. 7.
    Masaki H. Role of antioxidants in the skin: anti-aging effects. J Dermatol Sci. 2010;58(2):85–90.CrossRefPubMedGoogle Scholar
  8. 8.
    Pietta PG. Flavonoids as antioxidants. J Nat Prod [Internet]. 2000 Jul [cited 2014 Mar 24];63(7):1035–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10924197.
  9. 9.
    Manela-Azulay M, Bagatin E. Cosmeceuticals vitamins. Clin Dermatol. 2009;27(5):469–74.CrossRefPubMedGoogle Scholar
  10. 10.
    Oliveira CA, Peres DD, Rugno CM, Kojima M, Pinto CASDO, Consiglieri VO, et al. Functional photostability and cutaneous compatibility of bioactive UVA sun care products. J Photochem Photobiol B Biol [Internet]. 2015;148:154–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S101113441500130X.
  11. 11.
    Velasco MVR, Sarruf FD, Salgado-Santos IMN, Haroutiounian-Filho CA, Kaneko TM, Baby AR. Broad spectrum bioactive sunscreens. Int J Pharm [Internet]. 2008 Nov 3 [cited 2013 Feb 14];363(1–2):50–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18662760.
  12. 12.
    Baby AR. Avaliação in vitro da permeabilidade cutânea da rutina em emulsões cosméticas.São Paulo. 2007. 144 f. Tese (Doutorado) – Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo; 2007.Google Scholar
  13. 13.
    Shen L-N, Zhang Y-T, Wang Q, Xu L, Feng N-P. Enhanced in vitro and in vivo skin deposition of apigenin delivered using ethosomes. Int J Pharm. 2014;460(1–2):280–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Dongare SU, Raut S, Bonde S, Tayshete S, Gurav K. Ethosomes as novel vesicular carriers for enhanced drug delivery. Citeseer. 2012;4(2):2100–18.Google Scholar
  15. 15.
    Park SN, Lee HJ, Gu HA. Enhanced skin delivery and characterization of rutin-loaded ethosomes. Korean J Chem Eng [Internet]. 2014 Jan 10 [cited 2014 Nov 26];31(3):485–9. Available from: http://link.springer.com/10.1007/s11814-013-0232-3.
  16. 16.
    Ascenso A, Raposo S, Batista C, Cardoso P, Mendes T, Praca GF, et al. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes. Int J Nanomedicine. 2015;10:5837–51.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Barry B. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001;14(2):101–14.CrossRefPubMedGoogle Scholar
  18. 18.
    Godin B, Touitou E. Ethosomes: new prospects in transdermal delivery. Crit Rev Ther Drug Carrier Syst. 2003;20(1):63–102.CrossRefPubMedGoogle Scholar
  19. 19.
    Paolino D, Lucania G, Mardente D, Alhaique F, Fresta M. Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J Control Release. 2005;106(1–2):99–110.CrossRefPubMedGoogle Scholar
  20. 20.
    Estanqueiro M, Amaral MH, Conceição J, Lobo JMS. Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B Biointerfaces. 2015;126:631–48.CrossRefPubMedGoogle Scholar
  21. 21.
    Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 1999;65(3):403–18.CrossRefGoogle Scholar
  22. 22.
    Rakesh R, Anoop KR. Ethosomes for transdermal and topical drug delivery. Int J Pharm Pharm Sci. 2012;4(SUPPL.3):17–24.Google Scholar
  23. 23.
    López-Pinto JM, González-Rodríguez ML, Rabasco a M. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int J Pharm. 2005;298(1):1–12.CrossRefPubMedGoogle Scholar
  24. 24.
    De Oliveira CA, Peres DD, Graziola F, Chacra NAB, De Araújo GLB, Flórido AC, et al. Cutaneous biocompatible rutin-loaded gelatin-based nanoparticles increase the SPF of the association of UVA and UVB filters. Eur J Pharm Sci [Internet]. 2016;81:1–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0928098715300245.
  25. 25.
    Lue B-M, Nielsen NS, Jacobsen C, Hellgren L, Guo Z, Xu X. Antioxidant properties of modified rutin esters by DPPH, reducing power, iron chelation and human low density lipoprotein assays. Food Chem. 2010;123(2):221–30.CrossRefGoogle Scholar
  26. 26.
    Wilson TD, Steck WF. Research Section. A modified HET ± CAM assay approach to the assessment of anti-irritant properties of plant extracts. 2000;38:867–872.Google Scholar
  27. 27.
    Kalweit S, Besoke R, Gerner I, Spielmann H. A national validation project of alternative methods to the Draize rabbit eye test. Toxicol in Vitro. 1990;4(4):702–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Kligman a M, Wooding WM. A method for the measurement and evaluation of irritants on human Skin1. J Investig Dermatol. 1967;49(1):78–94.CrossRefPubMedGoogle Scholar
  29. 29.
    Marzulli FN, Maibach HI. The rabbit as a model for evaluating skin irritants: a comparison of results obtained on animals and man using repeated skin exposures. Food Cosmet Toxicol. 1975;13:533–40.CrossRefPubMedGoogle Scholar
  30. 30.
    Filipe V, Hawe A, Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res [Internet]. 2010 May [cited 2014 Jul 14];27(5):796–810. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2852530&tool=pmcentrez&rendertype=abstract.
  31. 31.
    Bartenstein JE, Robertson J, Battaglia G, Briscoe WH. Stability of polymersomes prepared by size exclusion chromatography and extrusion. Colloids Surf A Physicochem Eng Asp [Internet]. 2016;506:739–46. Available from:  https://doi.org/10.1016/j.colsurfa.2016.07.032.
  32. 32.
    Cao J, Sun J, Wang X, Li X, Deng Y. N-trimethyl chitosan-coated multivesicular liposomes for oxymatrine oral delivery. Drug Dev Ind Pharm. 2009;35(11):1339–47.CrossRefPubMedGoogle Scholar
  33. 33.
    Kerdudo A, Dingas A, Fernandez X, Faure C. Encapsulation of rutin and naringenin in multilamellar vesicles for optimum antioxidant activity. Food Chem. 2014;159:12–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Touitou E, Godin B, Weiss C. Enhanced delivery of drugs into and across the skin by ethosomal carriers. Drug Dev Res. 2000;50(3–4):406–15.CrossRefGoogle Scholar
  35. 35.
    Li G, Fan Y, Fan C, Li X, Wang X, Li M, et al. Tacrolimus-loaded ethosomes: physicochemical characterization and in vivo evaluation. Eur J Pharm Biopharm. 2012;82(1):49–57.CrossRefPubMedGoogle Scholar
  36. 36.
    Alonso C, Barba C, Rubio L, Scott S, Kilimnik A, Coderch L, et al. An ex vivo methodology to assess the lipid peroxidation in stratum corneum. J Photochem Photobiol B Biol [Internet]. 2009;97(2):71–6. Available from:  https://doi.org/10.1016/j.jphotobiol.2009.08.003.
  37. 37.
    Lademann J, Jacobi U, Surber C, Weigmann H-J, Fluhr JW. The tape stripping procedure—evaluation of some critical parameters. Eur J Pharm Biopharm [Internet]. 2009 Jun [cited 2014 Oct 26];72(2):317–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18775778.

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Thalita Marcílio Cândido
    • 1
  • Camila Areias De Oliveira
    • 1
  • Maíra Bueno Ariede
    • 1
  • Maria Valéria Robles Velasco
    • 1
  • Catarina Rosado
    • 2
  • André Rolim Baby
    • 1
  1. 1.Department of Pharmacy, School of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil
  2. 2.CBIOS – Universidade Lusófona’s Research Center for Biosciences and Health TechnologiesLisbonPortugal

Personalised recommendations