AAPS PharmSciTech

, Volume 19, Issue 4, pp 1789–1801 | Cite as

Multi-faceted Characterization of Wet-milled Griseofulvin Nanosuspensions for Elucidation of Aggregation State and Stabilization Mechanisms

  • M. Li
  • P. Alvarez
  • P. Orbe
  • E. Bilgili
Research Article


Characterization of wet-milled drug suspensions containing neutral polymer–anionic surfactant as stabilizers poses unique challenges in terms of assessing the aggregation state and examining the stabilization mechanisms. Using a multi-faceted characterization method, this study aims to assess the aggregation state of wet-milled griseofulvin (GF) nanosuspensions and elucidate the stabilization mechanisms and impact of stabilizers. Two grades, SSL and L, of hydroxypropyl cellulose (HPC) with molecular weights of 40 and 140 kg/mol, respectively, were used as a neutral stabilizer at concentrations varying from 0 to 7.5% (w/w) without and with 0.05% (w/w) sodium dodecyl sulfate (SDS). The aggregation state was examined via laser diffraction, scanning electron microscope (SEM) imaging, and rheometry. Zeta potential, stabilizer adsorption, surface tension, and drug wettability were used to elucidate the stabilization mechanisms. The results suggest that deviation from a uni-modal PSD and pronounced pseudoplasticity with power–law index lower than one signify severe aggregation. Polymer or surfactant alone was not able to prevent GF nanoparticle aggregation, whereas HPC–SDS combination led to synergistic stabilization. The effect of polymer concentration was explained mainly by the stabilizer adsorption and partly by surface tension. The synergistic stabilization afforded by HPC–SDS, traditionally explained by electrosteric mechanism, was attributed to steric stabilization provided by HPC and enhanced GF wettability/reduced surface tension provided by SDS. Zeta potential results could not explain the mitigation of aggregation by HPC–SDS. Overall, this study has demonstrated that the elucidation of the complex effects of HPC–SDS on GF nanosuspension stability entails a multi-faceted and comprehensive characterization approach.


drug nanoparticles wet media milling aggregation rheology modified Washburn method 


Funding Information

The authors acknowledge financial support from the U.S. National Science Foundation (NSF) Engineering Research Center (ERC) for Structured Organic Systems (SOPS) through Grant EEC-0540855.


  1. 1.
    Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev. 2011;63(6):427–40.CrossRefPubMedGoogle Scholar
  2. 2.
    Li M, Azad M, Davé R, Bilgili E. Nanomilling of drugs for bioavailability enhancement: a holistic formulation-process perspective. Pharmaceutics. 2016;8(2):17.CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Afolabi A, Akinlabi O, Bilgili E. Impact of process parameters on the breakage kinetics of poorly water-soluble drugs during wet stirred media milling: a microhydrodynamic view. Eur J Pharm Sci. 2014;51:75–86.CrossRefPubMedGoogle Scholar
  4. 4.
    Merisko-Liversidge EM, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol. 2008;36(1):43–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Kesisoglou F, Panmai S, Wu Y. Nanosizing—oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59(7):631–44.CrossRefPubMedGoogle Scholar
  6. 6.
    Monteiro A, Afolabi A, Bilgili E. Continuous production of drug nanoparticle suspensions via wet stirred media milling: a fresh look at the Rehbinder effect. Drug Dev Ind Pharm. 2013;39(2):266–83.CrossRefPubMedGoogle Scholar
  7. 7.
    Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47(1):3–19.CrossRefPubMedGoogle Scholar
  8. 8.
    Cooper ER. Nanoparticles: a personal experience for formulating poorly water soluble drugs. J Control Release. 2010;141(3):300–2.CrossRefPubMedGoogle Scholar
  9. 9.
    Smyth H. Nanoparticles and nanosuspensions: physical and biological properties. Drug Dev Ind Pharm. 2016;42(5):685.CrossRefPubMedGoogle Scholar
  10. 10.
    Jiang X, Cheng Y-S, Smyth HD. Nanostructured aerosol particles: fabrication, pulmonary drug delivery, and controlled release. J Nanomater. 2011;2011:1–2.Google Scholar
  11. 11.
    Basa S, Muniyappan T, Karatgi P, Prabhu R, Pillai R. Production and in vitro characterization of solid dosage form incorporating drug nanoparticles. Drug Dev Ind Pharm. 2008;34(11):1209–18.CrossRefPubMedGoogle Scholar
  12. 12.
    Lee J. Drug nano- and microparticles processed into solid dosage forms: physical properties. J Pharm Sci. 2003;92(10):2057–68.CrossRefPubMedGoogle Scholar
  13. 13.
    Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;364(1):64–75.CrossRefPubMedGoogle Scholar
  14. 14.
    Peltonen L, Hirvonen J. Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J Pharm Pharmacol. 2010;62(11):1569–79.CrossRefPubMedGoogle Scholar
  15. 15.
    Bilgili E, Afolabi A. A combined microhydrodynamics–polymer adsorption analysis for elucidation of the roles of stabilizers in wet stirred media milling. Int J Pharm. 2012;439(1):193–206.CrossRefPubMedGoogle Scholar
  16. 16.
    Knieke C, Azad M, Davé R, Bilgili E. A study of the physical stability of wet media-milled fenofibrate suspensions using dynamic equilibrium curves. Chem Eng Res Des. 2013;91(7):1245–58.CrossRefGoogle Scholar
  17. 17.
    Li M, Lopez N, Bilgili E. A study of the impact of polymer–surfactant in drug nanoparticle coated pharmatose composites on dissolution performance. Adv Powder Technol. 2016;27(4):1625–36.CrossRefGoogle Scholar
  18. 18.
    Knieke C, Azad MA, To D, Bilgili E, Davé RN. Sub-100 micron fast dissolving nanocomposite drug powders. Powder Technol. 2015;271:49–60.CrossRefGoogle Scholar
  19. 19.
    Bhakay A, Merwade M, Bilgili E, Dave RN. Novel aspects of wet milling for the production of microsuspensions and nanosuspensions of poorly water-soluble drugs. Drug Dev Ind Pharm. 2011;37(8):963–76.CrossRefPubMedGoogle Scholar
  20. 20.
    Bilgili E, Li M, Afolabi AI. The combination of cellulosic polymers and anionic surfactants a good strategy for ensuring physical stability of BCS class II drug nanosuspensions? Pharm Dev Technol. 2016;21(4):499–510.PubMedGoogle Scholar
  21. 21.
    Susarla R, Afolabi A, Patel D, Bilgili E, Davé RN. Novel use of superdisintegrants as viscosity enhancing agents in biocompatible polymer films containing griseofulvin nanoparticles. Powder Technol. 2015;285:25–33.CrossRefGoogle Scholar
  22. 22.
    Verma S, Kumar S, Gokhale R, Burgess DJ. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Int J Pharm. 2011;406(1):145–52.CrossRefPubMedGoogle Scholar
  23. 23.
    Lebhardt T, Roesler S, Uusitalo HP, Kissel T. Surfactant-free redispersible nanoparticles in fast-dissolving composite microcarriers for dry-powder inhalation. Eur J Pharm Biopharm. 2011;78(1):90–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Choi J-Y, Park CH, Lee J. Effect of polymer molecular weight on nanocomminution of poorly soluble drug. Drug Deliv. 2008;15(5):347–53.CrossRefPubMedGoogle Scholar
  25. 25.
    Sepassi S, Goodwin DJ, Drake AF, Holland S, Leonard G, Martini L, et al. Effect of polymer molecular weight on the production of drug nanoparticles. J Pharm Sci. 2007;96(10):2655–66.CrossRefPubMedGoogle Scholar
  26. 26.
    Duro R, Alvarez C, Martı́nez-Pacheco R, Gómez-Amoza JL, Concheiro A, Souto C. The adsorption of cellulose ethers in aqueous suspensions of pyrantel pamoate: effects on zeta potential and stability. Eur J Pharm Biopharm. 1998;45(2):181–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Li M, Yaragudi N, Afolabi A, Dave R, Bilgili E. Sub-100nm drug particle suspensions prepared via wet milling with low bead contamination through novel process intensification. Chem Eng Sci. 2015;130:207–20.CrossRefGoogle Scholar
  28. 28.
    Schubert MA, Harms M, Müller-Goymann CC. Structural investigations on lipid nanoparticles containing high amounts of lecithin. Eur J Pharm Sci. 2006;27(2):226–36.CrossRefPubMedGoogle Scholar
  29. 29.
    Knieke C, Sommer M, Peukert W. Identifying the apparent and true grinding limit. Powder Technol. 2009;195(1):25–30.CrossRefGoogle Scholar
  30. 30.
    Azad M, Afolabi A, Bhakay A, Leonardi J, Davé R, Bilgili E. Enhanced physical stabilization of fenofibrate nanosuspensions via wet co-milling with a superdisintegrant and an adsorbing polymer. Eur J Pharm Biopharm. 2015;94(0):372–85.CrossRefPubMedGoogle Scholar
  31. 31.
    Müller R. Zetapotential und partikelladung—kurze theorie, praktische meßdurchführung, dateninterpretation. Stuttgart: Wissenschaftliche; 1996.Google Scholar
  32. 32.
    Riddick TM. Control of colloid stability through zeta potential. Zeta-Meter Inc. via Livingston Publishing Company; 1968.Google Scholar
  33. 33.
    Lakshmi P, Kumar GA. Nanosuspension technology: a review. Int J Pharm Pharm Sci. 2010;2(4):35–40.Google Scholar
  34. 34.
    Mishra PR, Shaal LA, Müller RH, Keck CM. Production and characterization of Hesperetin nanosuspensions for dermal delivery. Int J Pharm. 2009;371(1):182–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Müller R, Jacobs C. Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. Int J Pharm. 2002;237(1):151–61.CrossRefPubMedGoogle Scholar
  36. 36.
    Verma S, Huey BD, Burgess DJ. Scanning probe microscopy method for nanosuspension stabilizer selection. Langmuir. 2009;25(21):12481–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Goodwin DJ, Sepassi S, King SM, Holland SJ, Martini LG, Lawrence MJ. Characterization of polymer adsorption onto drug nanoparticles using depletion measurements and small-angle neutron scattering. Mol Pharm. 2013;10(11):4146–58.CrossRefPubMedGoogle Scholar
  38. 38.
    Alghunaim A, Kirdponpattara S, Newby B-mZ. Techniques for determining contact angle and wettability of powders. Powder Technol. 2016;287:201–15.CrossRefGoogle Scholar
  39. 39.
    Kipp JE. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm. 2004;284(1–2):109–22.CrossRefPubMedGoogle Scholar
  40. 40.
    Kuentz M, Egloff P, Röthlisberger D. A technical feasibility study of surfactant-free drug suspensions using octenyl succinate-modified starches. Eur J Pharm Biopharm. 2006;63(1):37–43.CrossRefPubMedGoogle Scholar
  41. 41.
    Van Eerdenbrugh B, Vermant J, Martens JA, Froyen L, Van Humbeeck J, Augustijns P, et al. A screening study of surface stabilization during the production of drug nanocrystals. J Pharm Sci. 2009;98(6):2091–103.CrossRefPubMedGoogle Scholar
  42. 42.
    Washburn EW. The dynamics of capillary flow. Phys Rev. 1921;17(3):273–83.CrossRefGoogle Scholar
  43. 43.
    Hołownia D, Kwiatkowska I, Hupka J. An investigation on wetting of porous materials. Physicochem Probl Miner. 2008;42:251–62.Google Scholar
  44. 44.
    Li M, Ioannidis N, Gogos C, Bilgili E. A comparative assessment of nanocomposites vs. amorphous solid dispersions prepared via nanoextrusion for drug dissolution enhancement. Eur J Pharm Biopharm. 2017;119:68–80.CrossRefPubMedGoogle Scholar
  45. 45.
    Ain-Ai A, Gupta PK. Effect of arginine hydrochloride and hydroxypropyl cellulose as stabilizers on the physical stability of high drug loading nanosuspensions of a poorly soluble compound. Int J Pharm. 2008;351(1–2):282–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Barthelmes G, Pratsinis S, Buggisch H. Particle size distributions and viscosity of suspensions undergoing shear-induced coagulation and fragmentation. Chem Eng Sci. 2003;58(13):2893–902.CrossRefGoogle Scholar
  47. 47.
    Bernhardt C, Reinsch E, Husemann K. The influence of suspension properties on ultra-fine grinding in stirred ball mills. Powder Technol. 1999;105(1–3):357–61.CrossRefGoogle Scholar
  48. 48.
    Knieke C, Steinborn C, Romeis S, Peukert W, Breitung-Faes S, Kwade A. Nanoparticle production with stirred media mills: opportunities and limits. Chem Eng Technol. 2010;33(9):1401–11.CrossRefGoogle Scholar
  49. 49.
    Bhakay A, Azad M, Bilgili E, Dave R. Redispersible fast dissolving nanocomposite microparticles of poorly water-soluble drugs. Int J Pharm. 2014;461(1):367–79.CrossRefPubMedGoogle Scholar
  50. 50.
    Yang H, Teng F, Wang P, Tian B, Lin X, Hu X, et al. Investigation of a nanosuspension stabilized by Soluplus® to improve bioavailability. Int J Pharm. 2014;477(1–2):88–95.CrossRefPubMedGoogle Scholar
  51. 51.
    Patel CM, Chakraborty M, Murthy ZVP. Preparation of fenofibrate nanoparticles by combined stirred media milling and ultrasonication method. Ultrason Sonochem. 2014;21(3):1100–7.CrossRefPubMedGoogle Scholar
  52. 52.
    George M, Ghosh I. Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAs) of nanosuspension formulation prepared by wet media milling technology. Eur J Pharm Sci. 2013;48(1–2, 142):–52.Google Scholar
  53. 53.
    Cerdeira AM, Mazzotti M, Gander B. Formulation and drying of miconazole and itraconazole nanosuspensions. Int J Pharm. 2013;443(1–2):209–20.CrossRefPubMedGoogle Scholar
  54. 54.
    Cerdeira AM, Mazzotti M, Gander B. Miconazole nanosuspensions: influence of formulation variables on particle size reduction and physical stability. Int J Pharm. 2010;396(1):210–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Bilgili E, Hamey R, Scarlett B. Nano-milling of pigment agglomerates using a wet stirred media mill: elucidation of the kinetics and breakage mechanisms. Chem Eng Sci. 2006;61(1):149–57.CrossRefGoogle Scholar
  56. 56.
    Sommer M, Stenger F, Peukert W, Wagner NJ. Agglomeration and breakage of nanoparticles in stirred media mills—a comparison of different methods and models. Chem Eng Sci. 2006;61(1):135–48.CrossRefGoogle Scholar
  57. 57.
    Kissa E. Preparation and testing of dispersions. In: Dispersions: characterization, testing, and measurement. Boca Raton: CRC Press; 1999. p. 240–41.Google Scholar
  58. 58.
    Yasueda S-i, Inada K, Matsuhisa K, Terayama H, Ohtori A. Evaluation of ophthalmic suspensions using surface tension. Eur J Pharm Biopharm. 2004;57(2):377–82.CrossRefPubMedGoogle Scholar
  59. 59.
    Korson L, Drost-Hansen W, Millero FJ. Viscosity of water at various temperatures. J Phys Chem. 1969;73(1):34–9.CrossRefGoogle Scholar
  60. 60.
    Kushner LM, Duncan BC, Hoffman JI. A viscometric study of the micelles of sodium dodecyl sulfate in dilute solutions. J Res Natl Bur Stand. 1952;49:85–90.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  1. 1.Otto H. York Department of Chemical, Biological and Pharmaceutical EngineeringNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations