Skip to main content
Log in

Biowaiver or Bioequivalence: Ambiguity in Sildenafil Citrate BCS Classification

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of the present study is to contribute to the scientific characterization of sildenafil citrate according to the Biopharmaceutics Classification System, following the World Health Organization (WHO) guidelines for biowaivers. The solubility and intestinal permeability data of sildenafil citrate were collected from literature; however, the experimental solubility studies are inconclusive and its “high permeability” suggests an API in the borderline of BCS Class I and Class II. The pH-solubility profile was determined using the saturation shake-flask method over the pH range of 1.2–6.8 at a temperature of 37 °C in aqueous media. The intestinal permeability was determined in rat by a closed-loop in situ perfusion method (the Doluisio technique). The solubility of sildenafil citrate is pH-dependent and at pH 6.8 the dose/solubility ratio obtained does not meet the WHO criteria for “high solubility.” The high permeability values obtained by in situ intestinal perfusion in rat reinforce the published permeability data for sildenafil citrate. The experimental results obtained and the data available in the literature suggest that sildenafil citrate is clearly a Class II of BCS, according to the current biopharmaceutics classification system and WHO guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kasim NA, Whitehouse M, Ramachandran C, Bermejo Sanz M, Lennernas H, Hussain AS, et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm. 2004;1(1):85–96.

    Article  CAS  PubMed  Google Scholar 

  2. Cook JA, Davit B, Polli JE. Impact of biopharmaceutics classification system-based biowaivers. Mol Pharm. 2010;7(5):1539–44.

    Article  CAS  PubMed  Google Scholar 

  3. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  CAS  PubMed  Google Scholar 

  4. CDER/FDA FDA Guidance for Industry: waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a Biopharmaceutics Classification System. Rockville, MD, USA; 2015.

  5. EMA. EMA/CHMP: guidelines on the investigation of Bioequivalence. London; 2010.

  6. WHO. Multisource (generic) pharmaceutical products: guidelines on registration requirements to establish Interchangeability. WHO Expert Committee on Specifications for Pharmaceutical Products: forty-ninth report. World Health Organization: Geneva; 2015: Annex 7 (WHO Technical Report Series, No. 992). 2015.

  7. Butler JM, Dressman JB. The developability classification system: application of biopharmaceutics concepts to formulation development. J Pharm Sci. 2010;99(12):4940–54.

    Article  CAS  PubMed  Google Scholar 

  8. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  9. Pham-The H, Garrigues T, Bermejo M, Gonzalez-Alvarez I, Monteagudo MC, Cabrera-Perez MA. Provisional classification and in silico study of biopharmaceutical system based on caco-2 cell permeability and dose number. Mol Pharm. 2013;10(6):2445–61.

    Article  CAS  PubMed  Google Scholar 

  10. International Pharmaceutical Federation (FIP). Biowaiver monographs. [Internet]. 2017 [cited 2017 Dec 14]. Available from: http://www.fip.org/bcs_monographs

  11. Carson C. Long-term use of sildenafil. Expert Opin Pharmacother. 2003;4:397–405.

    Article  CAS  PubMed  Google Scholar 

  12. Jung S, Seo Y, Kim GK, Woo JS, Yong CS, Choi H. Comparison of the solubility and pharmacokinetics of sildenafil salts. Arch Pharm Res. 2011;34(3):451–4.

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Chow MSS, Zuo Z. Mechanistic analysis of pH-dependent solubility and trans-membrane permeability of amphoteric compounds: application to sildenafil. Int J Pharm. 2008;352:217–24.

    Article  CAS  PubMed  Google Scholar 

  14. Walker DK, Ackland MJ, James G, Muirhead GJ, Rance DJ, Wastall P, et al. Pharmacokinetics and metabolism of sildenafil in mouse, rat, rabbit, dog and man. Xenobiotica. 1999;29(3):297–310.

    Article  CAS  PubMed  Google Scholar 

  15. Gertz M, Harrison AP, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from invitro clearance and permeability data. Drug Metab Dispos. 2010;38(7):1147–58.

    Article  CAS  PubMed  Google Scholar 

  16. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13(4):519–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Canada P. Product monograph: Viagra. 2015.

  18. Badwan A, Nabulsi L, Al-Omari M, Daraghmeh N, Ashour M. Sildenafil Citrate. In: Brittain HG, editor. Analytical profiles of drug substances and excipients Volume 27. Academic Press Professional, Inc.; 2001. p. 339–76.

  19. Formulary USPN. United States Pharmacopeia and National Formulary (USP 38-NF 33). In: United States Pharmacopeia Convention. 2015.

  20. Baka E, Comer JEA, Takács-Novák K. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound. J Pharm Biomed Anal. 2008;46(2):335–41.

    Article  CAS  PubMed  Google Scholar 

  21. Avdeef A, Fuguet E, Llinàs A, Ràfols C, Bosch E, Völgyi G, et al. Equilibrium solubility measurement of ionizable drugs—consensus recommendations for improving data quality. Admet Dmpk. 2016;4(2):117–78.

    Article  Google Scholar 

  22. Doluisio JT, Billups NF, Dittert LW, Sugita ET, Swintosky JV. Drug absorption. I. An in situ rat gut technique yielding realistic absorption rates. J Pharm Sci. 1969;58:1196–2000.

    Article  CAS  PubMed  Google Scholar 

  23. Casabo VG, Nunez-Benito E, Martinez-Coscolla A, Miralles-Loyola E, Martin-Villodre A, Pla-Delfina JM. Studies on the reliability of a bihyperbolic functional absorption model. II. Phenylalkylamines. J Pharmacokinet Biopharm. 1987;15(6):633–43.

    Article  CAS  PubMed  Google Scholar 

  24. Ferrando R, Garrigues TM, Bermejo MV, Martin-Algarra R, Merino V, Polache A. Effects of ethanol on intestinal absorption of drugs: in situ studies with ciprofloxacin analogs in acute and chronic alcohol-fed rats. Alcohol Clin Exp Res. 1999;23(8):1403–8.

    CAS  PubMed  Google Scholar 

  25. Bermejo M, Merino V, Garrigues TM, Pla Delfina JM, Mulet A, Vizet P, et al. Validation of a biophysical drug absorption model by the PATQSAR system. J Pharm Sci. 1999;88(4):398–405.

    Article  CAS  PubMed  Google Scholar 

  26. Ruiz-Garcia A, Bermejo M, Merino V, Sanchez-Castano G, Freixas J, Garrigues TM. Pharmacokinetics, bioavailability and absorption of flumequine in the rat. Eur J Pharm Biopharm. 1999;48(3):253–8.

    Article  CAS  PubMed  Google Scholar 

  27. Tugcu-Demiroz F, Gonzalez-Alvarez I, Gonzalez-Alvarez M, Bermejo M. Validation of phenol red versus gravimetric method for water reabsorption correction and study of gender differences in Doluisio’s absorption technique. Eur J Pharm Sci. 2014;62:105–10.

    Article  CAS  PubMed  Google Scholar 

  28. Martin-Villodre A, Pla-Delfina JM, Moreno J, Pérez-Buendía D, Miralles J, Collado EF, et al. Studies on the reliability of a bihyperbolic functional absorption model. I. Ring-substituted anilines. J Pharmacokinet Biopharm. 1986;14(6):615–33.

    Article  CAS  PubMed  Google Scholar 

  29. Stenberg P, Norinder U, Luthman K, Artursson P. Experimental and computational screening models for the prediction of intestinal drug absorption. J Med Chem. 2001;44(12):1927–37.

    Article  CAS  PubMed  Google Scholar 

  30. Hou T, Wang J, Zhang W, Xu X. ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. J Chem Inf Model. 2007;47(1):208–18.

    Article  CAS  PubMed  Google Scholar 

  31. Varma MV, Gardner I, Steyn SJ, Nkansah P, Fenner KS, El-Kattan AF. pH-dependent solubility and permeability criteria for provisional biopharmaceutics classification (BCS and BDDCS) in early drug discovery. Mol Pharm. 2012;9(5):1199–212.

    Article  CAS  PubMed  Google Scholar 

  32. Avdeef A. The rise of PAMPA. Expert Opin Drug Metab Toxicol. 2005;1(2):325–42.

    Article  CAS  PubMed  Google Scholar 

  33. Kim JS, Mitchell S, Kijek P, Tsume Y, Hilfinger J, Amidon GL. The suitability of an in situ perfusion model for permeability determinations: utility for BCS class I biowaiver requests. Mol Pharm. 2006;3(6):686–94.

    Article  CAS  PubMed  Google Scholar 

  34. Gupta M, Kovar A, Meibohm B. The clinical pharmacokinetics of phosphodiesterase-5 inhibitors for erectile dysfunction. J Clin Pharmacol. 2005;45:987–1003.

    Article  CAS  PubMed  Google Scholar 

  35. Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989;96(3):736–49.

    Article  CAS  PubMed  Google Scholar 

  36. Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE, et al. MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability screening. J Pharm Sci. 1999;88(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  37. Teksin ZS, Seo PR, Polli JE. Comparison of drug permeabilities and BCS classification: three lipid-component PAMPA system method versus Caco-2 monolayers. AAPS J. 2010;12(2):238–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zakeri-Milani P, Valizadeh H, Tajerzadeh H, Azarmi Y, Islambolchilar Z, Barzegar S, et al. Predicting human intestinal permeability using single-pass intestinal perfusion in rat. J Pharm Pharm Sci. 2007;10(3):368–79.

    CAS  PubMed  Google Scholar 

  39. Cao X, Gibbs ST, Fang L, Miller HA, Landowski CP, Shin H-C, et al. Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm Res. 2006;23(8):1675–86.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao YH, Abraham MH, Le J, Hersey A, Luscombe CN, Beck G, et al. Evaluation of rat intestinal absorption data and correlation with human intestinal absorption. Eur J Med Chem. 2003;38:233–43.

    Article  CAS  PubMed  Google Scholar 

  41. Zakeri-Milani P, Valizadeh H, Tajerzadeh H, Islambulchilar Z. The utility of rat jejunal permeability for biopharmaceutics classification system. Drug Dev Ind Pharm. 2009;35(12):1496–502.

    Article  CAS  PubMed  Google Scholar 

  42. Dahan A, Wolk O, Kim YH, Ramachandran C, Crippen GM, Takagi T, et al. Purely in silico BCS classification: science based quality standards for the world’s drugs. Mol Pharm. 2013;10:4378–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank to MEDSOL Laboratories (Havana, Cuba) for the generous donation of sildenafil citrate. We also thank to Centro de Investigación y Desarrollo de Medicamentos (CIDEM) for the collaboration in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ángel Cabrera-Pérez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, C., Pérez-Rodríguez, Z., Hernández-Armengol, R. et al. Biowaiver or Bioequivalence: Ambiguity in Sildenafil Citrate BCS Classification. AAPS PharmSciTech 19, 1693–1698 (2018). https://doi.org/10.1208/s12249-018-0982-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-0982-7

KEY WORDS

Navigation