AAPS PharmSciTech

, Volume 19, Issue 4, pp 1652–1661 | Cite as

Etoposide-Loaded Poly(Lactic-co-Glycolic Acid) Intravitreal Implants: In Vitro and In Vivo Evaluation

  • Ana Gabriela Reis SolanoEmail author
  • Adriana de Fátima Pereira
  • Luiz Gustavo Amorim de Faria
  • Silvia Ligório Fialho
  • Patrícia Santiago de Oliveira Patricio
  • Armando da Silva-Cunha
  • Gustavo Oliveira Fulgêncio
  • Gisele Rodrigues da Silva
  • Gérson Antônio Pianetti
Research Article


Etoposide-loaded poly(lactic-co-glycolic acid) implants were developed for intravitreal application. Implants were prepared by a solvent-casting method and characterized in terms of content uniformity, morphology, drug-polymer interaction, stability, and sterility. In vitro drug release was investigated and the implant degradation was monitored by the percent of mass loss. Implants were inserted into the vitreous cavity of rabbits’ eye and the in vivo etoposide release profile was determined. Clinical examination and the Hen Egg Test-Chorioallantoic Membrane (HET-CAM) method were performed to evaluate the implant tolerance. The original chemical structure of the etoposide was preserved after incorporation in the polymeric matrix, which the drug was dispersed uniformly. In vitro, implants promoted sustained release of the drug and approximately 57% of the etoposide was released in 50 days. In vivo, devices released approximately 63% of the loaded drug in 42 days. Ophthalmic examination and HET-CAM assay revealed no evidence of toxic effects of implants. These results tend to show that etoposide-loaded implants could be potentially useful as an intraocular etoposide delivery system in the future.


ocular drug delivery system retinoblastoma etoposide PLGA in vivo release 



The authors would like to thank Quiral Química do Brasil S.A., for the etoposide donation, and CNPq, FAPEMIG, and Brazilian Pharmacopoeia, for the financial support.

Compliance with Ethical Standards

The experiment was approved by the Ethics Committee in Animal Experimentation of the Ezequiel Dias Foundation (Protocol 030/2011).


  1. 1.
    Kiss S, Leiderman YI, Mukai S. Diagnosis, classification, and treatment of retinoblastoma. Int Ophthalmol Clin. 2008;48:135–47.CrossRefPubMedGoogle Scholar
  2. 2.
    Chantada G, Schaiquevich P. Management of retinoblastoma in children: current status. Pediatr Drugs. 2015;17:185–98.CrossRefGoogle Scholar
  3. 3.
    Eljarrat-Binstock E, Peer J, Domb AJ. New techniques for drug delivery to the posterior eye segment. Pharm Res. 2010;27:530–43.CrossRefPubMedGoogle Scholar
  4. 4.
    Anselmo AC, Mitragori S. An overview of clinical and commercial impact of drug delivery systems. J Control Release. 2014;190:15–28.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kuno N, Fuji S. Biodegradable intraocular therapies for retinal disorders. Drugs Aging. 2010;27:117–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Fernandes-Cunha GM, Rezende CMF, Mussel WN, Silva GR, Gomes ECL, Yoshida MI, et al. Anti-toxoplasma activity and impact evaluation of lyophilization, hot molding process, and gamma-irradiation techniques on CLH-PLGA intravitreal implants. J Mater Sci. 2016;27:10. Scholar
  7. 7.
    Hande KR. Topoisomerase II inhibitors. Update Cancer Ther 2008; 3: 13–26.Google Scholar
  8. 8.
    Klasen A, Kessari R, Mercier L, Valade C, Grill J, Desmaris R, et al. Stability of etoposide solutions in disposable infusion devices for day hospital cancer practices. Drugs RD. 2014;14:13–23.CrossRefGoogle Scholar
  9. 9.
    Reif S, Kingreen D, Kloft C, Grimm J, Siegert W, Schunack W, et al. Bioequivalence investigation of high dose etoposide and etoposide phosphate in lymphoma patients. Cancer Chemother Pharmacol. 2001;48:134–40.CrossRefPubMedGoogle Scholar
  10. 10.
    Reif S, Nicolson MC, Bisset D, Reid M, Kloft C, Jaehde U, et al. Effect of grapefruit juice intake on etoposide bioavailability. Eur J Clin Pharmacol. 2002;58:491–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Mitra M, Dilnawaz F, Misra R, Harilal A, Verma RS, Sahoo SK, et al. Toxicogenomics of nanoparticulate delivery of etoposídeo: potential impact on nanotechnology in retinoblastoma therapy. Cancer Nanotechnol. 2011;2:21–36.CrossRefPubMedGoogle Scholar
  12. 12.
    Shah S, Pal A, Gude R, Devi S. A novel approach to prepare etoposide-loaded poly(n-vinyl caprolactam-co-methylmethacrylate) copolymeric nanoparticles and their controlled release studies. J Appl Polym Sci. 2013;127:4991–9.CrossRefGoogle Scholar
  13. 13.
    Patlolla RR, Vobalaboina V. Folate-targeted etoposide-encapsulated lipid nanospheres. J Drug Target. 2008;16:269–75.CrossRefPubMedGoogle Scholar
  14. 14.
    Dhanaraju MD, Sathyamoorthy N, Sundar VD, Suresh C. Preparation of poly(epsilon-caprolactone) microspheres containing etoposide by solvent evaporation method. Asian J Pharm Sci. 2010;5:114–22.Google Scholar
  15. 15.
    Solano AGR, Pereira AFP, Pinto FCH, Ferreira LGR, Barbosa LAO, Fialho SL, et al. Development and evaluation of sustained-release etoposide-loaded poly(ε-caprolactone) implants. AAPS PharmSciTech. 2013;14:890–900.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Saliba JB, Faraco AAG, Yoshida MI, Vasconselos WL, Cunha AS, Mansur HS. Development and characterization of an intraocular biodegradable polymer system containing cyclosporine-A for the treatment of posterior uveitis. Mater Res. 2008;11:207–11.CrossRefGoogle Scholar
  17. 17.
    Patel DH, Patel MP, Patel MM. Formulation and evaluation of drug free ophthalmic films prepared by using various synthetic polymers. J Young Pharm. 2009;1:116–20.CrossRefGoogle Scholar
  18. 18.
    U.S. Pharmacopoeia-National Formulary [USP 39 NF 34]. Volume 1. Rockville, Md: United States Pharmacopeial Convention, Inc; 2016.Google Scholar
  19. 19.
    Tian L, He H, Tang X. Stability and degradation kinetics of etoposide-loaded parenteral lipid emulsion. J Pharm Sci 2007; 96: 1719–1728.Google Scholar
  20. 20.
    Shah JC, Chen JR, Chow D. Preformulation study of etoposide: identification of physicochemical characteristics responsible for the low and erratic oral bioavailability of etoposide. Pharm Res. 1995;6:408–12.CrossRefGoogle Scholar
  21. 21.
    Nobrega AM, Alves EN, Presgrave RF, Costa RN, Delgado IF. Determination of eye irritation potential of low-irritant products: comparison of in vitro results with the in vivo Draize rabbit test. Braz Arch Biol Technol. 2012;55:381–8.CrossRefGoogle Scholar
  22. 22.
    Knoll A, Schmidt S, Chapman M, Wiley D, Bulgrin J, Blank J, et al. A comparison of two controlled-release delivery systems for the delivery of amiloride to control angiogenesis. Microvasc Res. 1999;58:1–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG. Drug delivery to the posterior segment of the eye. Drug Discov Today. 2006;16:270–7.CrossRefGoogle Scholar
  24. 24.
    Mcdonald PF, Lyons JG, Geever LM, Higginbotham CL. In vitro degradation and drug release from polymer blends based on poly(DL-lactide), poly(L-lactide-glycolide) and poly(ε-caprolactone). J Mater Sci. 2010;45:1284–92.CrossRefGoogle Scholar
  25. 25.
    Fouad H, Elsarnagawy T, Almajhdi FN, Khalil KA. Preparation and in vitro thermo mechanical characterization of electrospun PLGA nanofibers for soft and hard tissue replacement. Int J Electrochem Sci. 2013;8:2293–304.Google Scholar
  26. 26.
    Jasti BR, Du J, Vasavada RC. Characterization of thermal behavior of etoposide. Int J Pharm. 1995;118:161–7.CrossRefGoogle Scholar
  27. 27.
    Kumar P, Wasim P, Chopra M, Chhikara A. Co-delivery of vorinostat and etoposide via disulfide cross-linked biodegradable polymeric nanogels: synthesis, characterization, biodegradation, and anticancer activity. AAPS PharmSciTech. 2017;19:634–47. Scholar
  28. 28.
    Carrer H, Cortez J, Frare LM, Costa MB, Bittencourt PRS. Thermal characterization of the bromopride recrystallized from different solvents and at different temperature conditions. J Therm Anal Calorim. 2016;123:927–31.CrossRefGoogle Scholar
  29. 29.
    Cheng Y, Xu W, Chen Z, Wang Z, Huang D. Micronization of etoposide using solution-enhanced dispersion bysupercritical CO2. J Supercrit Fluids. 2016;115:10–6.CrossRefGoogle Scholar
  30. 30.
    Morales JO, Mcconville JT. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm. 2011;77:187–99.CrossRefPubMedGoogle Scholar
  31. 31.
    Yadav KS, Sawant KK. Formulation optimization of etoposide loaded PLGA nanoparticles by double factorial design and their evaluation. Curr Drug Deliv. 2010;7:51–64.CrossRefPubMedGoogle Scholar
  32. 32.
    Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3:1377–97.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—a review. Int J Pharm. 2011;415:34–52.CrossRefPubMedGoogle Scholar
  34. 34.
    Alany RG, Rades T, Nicoll J, Tucker IG, Davies NM. W/O microemulsions for ocular delivery: evaluation of ocular irritation and precorneal retention. J Control Release. 2006;111:145–52.CrossRefPubMedGoogle Scholar
  35. 35.
    Vargas A, Zeisser-Labouèbe M, Lange N, Gurny R, Delie F. The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems. Adv Drug Deliv Rev. 2007;59:1162–76.CrossRefPubMedGoogle Scholar
  36. 36.
    Li XQ, Shang BY, Wang DC, Zhang SH, Wu SY, Zhen YS. Endostar, a modified recombinant human endostatin, exhibits synergistic effects with dexamethasone on angiogenesis and hepatoma growth. Cancer Lett. 2011;301:212–20.CrossRefPubMedGoogle Scholar
  37. 37.
    Panigrahy D, Kaipainen A, Butterfield CE, Chaponis DM, Laforme AM, Folkman J, et al. Inhibition of tumor angiogenesis by oral etoposide. Exp Ther Med. 2010;1:739–46.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Avtar R, Tandon D. A mathematical analysis of intravitreal drug transport. Trop J Pharm Res. 2008;7:867–77.Google Scholar
  39. 39.
    Mendelsohn ME, Abramson DH, Madden T, Tong W, Tran HT, Dunkel IJ. Intraocular concentrations of chemotherapeutic agents after systemic or local administration. Arch Ophthalmol. 1998;116:1209–12.CrossRefPubMedGoogle Scholar
  40. 40.
    Mao Y, Wu Z, Yang H, Lin S, Zheng J. Measurement of intraocular concentrations of etoposide after systemic and local administration. Eye Sci. 2004;20:178–80.Google Scholar
  41. 41.
    Shah HR, Conway RM, Van Quill KR, Madigan MC, Howard SA, Qi J, et al. Beta-lapachone inhibits proliferation and induces apoptosis in retinoblastoma cell lines. Eye. 2008;22:454–60.CrossRefPubMedGoogle Scholar
  42. 42.
    Fialho SL, Rêgo MB, Siqueira RC, Jorge R, Haddad A, Rodrigues AL, et al. Safety and pharmacokinetics of an intravitreal biodegradable implant of dexamethasone acetate in rabbit eyes. Curr Eye Res. 2006;31:525–34.CrossRefPubMedGoogle Scholar
  43. 43.
    Wolinsky JB, Colson YL, Grinstaff MW. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release. 2012;159:14–26.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Ana Gabriela Reis Solano
    • 1
    Email author
  • Adriana de Fátima Pereira
    • 1
  • Luiz Gustavo Amorim de Faria
    • 1
  • Silvia Ligório Fialho
    • 2
  • Patrícia Santiago de Oliveira Patricio
    • 3
  • Armando da Silva-Cunha
    • 4
  • Gustavo Oliveira Fulgêncio
    • 4
  • Gisele Rodrigues da Silva
    • 5
  • Gérson Antônio Pianetti
    • 4
  1. 1.Faculty of PharmacyFederal University of São João del-ReiDivinópolisBrazil
  2. 2.Ezequiel Dias FoundationBelo HorizonteBrazil
  3. 3.Federal Center of Technological EducationBelo HorizonteBrazil
  4. 4.Faculty of PharmacyFederal University of Minas GeraisBelo HorizonteBrazil
  5. 5.Faculty of PharmacyFederal University of Ouro PretoOuro PretoBrazil

Personalised recommendations