Advertisement

AAPS PharmSciTech

, Volume 19, Issue 4, pp 1501–1511 | Cite as

A Review About the Drug Delivery from Microsponges

  • Mariana Volpato Junqueira
  • Marcos Luciano BruschiEmail author
Review Article

Abstract

Microparticulate drug delivery systems have shown a great interest in the pharmaceutical area. They allow the increase of drug therapeutic efficacy and the reduction of side effects. In this context, microsponges represent a new model of porous polymer microspheres, which allow the entrapment of a wide range of active agents. During the development, it is necessary the characterization of the system and among of the most important tests are the release and permeation profile analysis. They can demonstrate the behavior of drug in a specific site with a particular application condition and are related to therapeutic efficacy. Therefore, this review provides an overview of drug delivery profile from microsponges. Methods for determination of in vitro release and ex vivo permeation studies are detailed. Examples of drug delivery from microsponges administered in different sites are also discussed with aim to provide an understanding of the use of this strategy to modify the drug delivery.

KEY WORDS

drug delivery microsponges release profile permeation microparticulate systems 

Notes

Acknowledgments

The authors acknowledge the Brazilian agency CAPES (Coordination of Improvement of Higher Education Personnel).

References

  1. 1.
    Restani RB, Correia VG, Bonifácio VDB, Aguiar-Ricardo A. Development of functional mesoporous microparticles for controlled drug delivery. J Supercrit Fluids. 2010;55(1):333–9.CrossRefGoogle Scholar
  2. 2.
    Orlu M, Cevher E, Araman A. Design and evaluation of colon specific drug delivery system containing flurbiprofen microsponges. Int J Pharm. 2006;318:103–17.CrossRefPubMedGoogle Scholar
  3. 3.
    Li S, Li G, Liu L, Jiang X, Zhang B, Liu Z, et al. Evaluation of paeonol skin-target delivery from its microsponge formulation: in vitro skin permeation and in vivo microdialysis. PLoS One. 2013;8(11):1–8.Google Scholar
  4. 4.
    Aloorkar NH, Kulkarni a S, Ingale DJ, Patil R a. Microsponges as innovative drug delivery systems. Int J Pharm Sci Nanotechnol 2012;5(1):1597–1606.Google Scholar
  5. 5.
    Jain N, Sharma PK, Banik A. Recent advances on microsponge delivery system. Int J Pharm Sci Res. 2011;8(2):13–23.Google Scholar
  6. 6.
    Crcarevska MS, Dimitrovska A, Sibinovska N, Mladenovska K, Raicki RS, Dodov MG. Implementation of quality by design principles in the development of microsponges as drug delivery carriers: identification and optimization of critical factors using multivariate statistical analyses and design of experiments studies. Int J Pharm. 2015;489(1–2):58–72.CrossRefGoogle Scholar
  7. 7.
    Pandey P, Jain V, Mahajan S. A review: microsponge drug delivery system. Int J Biopharm. 2013;4(3):225–30.Google Scholar
  8. 8.
    Charde MS, Ghanawat PB, Welankiwar AS, Kumar J, Chakole RD. Microsponge A Novel new drug delivery system: a review. Int J Adv Pharm. 2013;2(6):63–70.Google Scholar
  9. 9.
    Lalitha SK, Shankar M, Likhitha D, Dastagiri J, Babu MN. A current view on microsponge drug delivery system. Eur J Mol biollogy Biochemist 2016;3(2):88–95.Google Scholar
  10. 10.
    Ravi R, Senthilkumar SK, Parthiban S. Microsponges drug delivery system: a review. Int J Pharm Rev Res. 2012;2(2):11–6.Google Scholar
  11. 11.
    Roy A. Microsponge as a novel drug carrier system: a review. World J Pharm Res. 2015;4(12):680–701.Google Scholar
  12. 12.
    Srivastava R, Pathak K. Microsponges: a futuristic approach for oral drug delivery. Expert Opin Drug Deliv. 2012;9(7):863–78.CrossRefPubMedGoogle Scholar
  13. 13.
    Swati KV, Shalini R, Kanchan M, Ashwini C, Eknath P. Microsponge: comprehensive review of application. Int J Pharm Biol Sci. 2013;3(1).Google Scholar
  14. 14.
    Kumari A, Jain A, Hurkat P, Verma A, Jain SK. Microsponges: a pioneering tool for biomedical applications. Ther drug Carr Syst. 2016;33(1):77–105.CrossRefGoogle Scholar
  15. 15.
    Patil RS, Kemkar VU, Patil SS. Microsponge drug delivery system: a novel dosage form. Am J PharmTech Res. 2012;2:227–51.Google Scholar
  16. 16.
    Jadhav N, Patel V, Mungekar S, Bhamare G, Karpe M. Microsponge delivery system: an updated review, current status and future prospects. J Sci Innov Res. 2013;2(6):1097–110.Google Scholar
  17. 17.
    Patil TS, Nalawade NA, Kakade VK, Kale SN. Nanosponges : A Novel Targeted Drug delivery for cancer treatment. Int J Adv Res Dev 2017;2(4):55–62.Google Scholar
  18. 18.
    Nokhodchi A, Jelvehgari M, Siahi MR, Mozafari MR. Factors affecting the morphology of benzoyl peroxide microsponges. Micron. 2007;38:834–40.CrossRefPubMedGoogle Scholar
  19. 19.
    Angamuthu M, Nanjappa SH, Raman V, Jo S, Cegu P, Murthy SN. Controlled-release injectable containing terbinafine/PLGA microspheres for onychomycosis treatment. J Pharm Sci. 2014;103(4):1178–83.CrossRefPubMedGoogle Scholar
  20. 20.
    Saxena S, Nacht S. Polymeric porous delivery systems: polytrap and microsponge. In: Delivery system handbook for personal care and cosmetic products: technology, applications, and formulations. William Andrew Inc.; 2005. p. 333–352.Google Scholar
  21. 21.
    Kumar PM, Ghosh A. Development and evaluation of silver sulfadiazine loaded microsponge based gel for partial thickness (second degree) burn wounds. Eur J Pharm Sci. 2017;96:243–54.CrossRefPubMedGoogle Scholar
  22. 22.
    Çomoglu T, Gönül N, Baykara T. Preparation and in vitro evaluation of modified release ketoprofen microsponges. Farm. 2003;58:101–6.CrossRefGoogle Scholar
  23. 23.
    Shah DK, Agrawal A. Formulation and evaluation of polymeric microsponges of ketoconazole for topical delivery. World J Pharm Pharm Sci. 2016;5(10):939–962.Google Scholar
  24. 24.
    Nocent M, Bertocchi L, Espitalier F, Baron M, Couarraze G. Definition of a solvent system for spherical crystallization of salbutamol sulfate by quasi-emulsion solvent diffusion (QESD) method. J Pharm Sci. 2001;90(10):1620–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Abdelmalak NS, El-Menshawe SF. A new topical fluconazole microsponge loaded hydrogel: preparation and characterization. Int J Pharm Pharm Sci 2012;4(1):460–468.Google Scholar
  26. 26.
    Pande VV, Kadnor NA, Kadam RN, Upadhye SA. Fabrication and characterization of sertaconazole nitrate microsponge as a topical drug delivery system. Indian J Pharm Sci. 2015;77(6):675–80.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bothiraja C, Ghopal AD, Shaikh K, Pawar AP. Investigation of ethyl cellulose microsponge gel for topical delivery of eberconazole nitrate for fungal therapy. Ther Deliv 2014;5:781–794.Google Scholar
  28. 28.
    Mehta M, Panchal A, Shah VH, Upadhyay U. Formulation and in-vitro evaluation of controlled release microsponge gel for topical delivery of clotrimazole. Int J. Adv Pharm. 2012;2(2):93–101.Google Scholar
  29. 29.
    Amrutiya N, Bajaj A, Madan M. Development of microsponges for topical delivery of mupirocin. AAPS PharmSciTech. 2009;10(2):402–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kumar PM, Ghosh A. Development and evaluation of metronidazole loaded microsponge based gel for superficial surgical wound infections. J Drug Deliv Sci Technol. 2015;30:15–29.CrossRefGoogle Scholar
  31. 31.
    Srivastava R, Kumar D, Pathak K. Colonic luminal surface retention of meloxicam microsponges delivered by erosion based colon-targeted matrix tablet. Int J Pharm. 2012;427(2):153–62.CrossRefPubMedGoogle Scholar
  32. 32.
    Kadam V V., Patel VI, Karpe MS, Kadam VJ. Design, development and evaluation of celecoxib-loaded microsponge-based topical gel formulation. Appl Clin Res Clin trials Regul Aff 2016;4(3):44–55.Google Scholar
  33. 33.
    Çomoglu T, Gönül N, Baykara T. The effects of pressure and direct compression on tabletting of microsponges. Int J Pharm. 2002;242(1–2):191–5.CrossRefPubMedGoogle Scholar
  34. 34.
    Osmani RAM, Aloorkar NH, Ingale DJ, Kulkarni PK, Hani U, Bhosale RR, et al. Microsponges based novel drug delivery system for augmented arthritis therapy. Saudi Pharm J. 2015;23(5):562–72.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Singh S, Pathak K. Assessing the bioadhesivity of Acconon MC 8-2 EP/NF for gastroretention of floating microsponges of loratadine and achieving controlled drug delivery. Pharm Biomed Res. 2016;2(2):58–74.CrossRefGoogle Scholar
  36. 36.
    Charagonda S, Puligilla RD, Ananthula MB, Bakshi V. Formulation and evaluation of famotidine floating microsponges. Int Res J Pharm. 2016;7(4):62–7.CrossRefGoogle Scholar
  37. 37.
    Kumar JR, Muralidharan S, Ramasamy S. Microsponges enriched gel (MEGs): a novel strategy for opthalmic drug delivery system containing ketotifen. J Pharm Sci Res. 2013;5(4):97–102.Google Scholar
  38. 38.
    Raghuvanshi S, Pathak K. Bioadhesive floating microsponges of cinnarizine as novel gastroretentive delivery: Capmul GMO bioadhesive coating versus acconon MC 8 - 2 EP / NF with intrinsic bioadhesive property. Int J Pharm Investig. 2016;6(4):181–93.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bhandare CR, Katti SA. Formulation of microsponges of risperidone HCl. Int J Res Pharm Chem. 2016;6(3):518–27.Google Scholar
  40. 40.
    Muralidhar P, Bhargav E, Srinath B. Fomulation and optimization of bupropion HCl microsponges by 23 factorial design. Int J Pharm Sci Res 2017;8(3):1134–1144.Google Scholar
  41. 41.
    Gupta A, Tiwari G, Tiwari R, Srivastava R. Factorial designed 5-fluorouracil-loaded microsponges and calcium pectinate beads plugged in hydroxypropyl methylcellulose capsules for colorectal cancer. Int J Pharm Investig. 2015;5(4):234–46.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Steyn D, Plessis L, Kotzé A. Nasal delivery of recombinant human growth hormone: in vivo evaluation with Pheroid technology and N-trimethyl chitosan chloride. J Pharm Pharm Sci. 2010;13(2):263–73.CrossRefPubMedGoogle Scholar
  43. 43.
    Osmani RAM, Aloorkar NH, Thaware BU, Kulkarni PK, Moin A, Hani U, et al. Microsponge based drug delivery system for augmented gastroparesis therapy: Formulation development and evaluation.. Asian J Pharm Sci. 2015;10(5):442–51.CrossRefGoogle Scholar
  44. 44.
    Jelvehgari M, Siahi-shadbad MR, Azarmi S, Martin GP, Nokhodchi A. The microsponge delivery system of benzoyl peroxide: preparation, characterization and release studies. Int J Pharm. 2006;308:124–32.CrossRefPubMedGoogle Scholar
  45. 45.
    Annu P, Kumar AY. Design and evaluation of celecoxib microsponge. Int J Pharma Sci Res. 2016;7(10):396–405.Google Scholar
  46. 46.
    Jain V, Jain D, Singh R. Factors effecting the morphology of Eudragit S-100 based microsponges bearing dicyclomine for colonic delivery. J Pharm Sci. 2010;100(4):1545–52.CrossRefPubMedGoogle Scholar
  47. 47.
    Arya P, Pathak K. Assessing the viability of microsponges as gastro retentive drug delivery system of curcumin: optimization and pharmacokinetics. Int J Pharm. 2014;460:1–2):1–12.CrossRefPubMedGoogle Scholar
  48. 48.
    Chien YW. Novel drug delivery systems. 2. New York: Marcel Dekker; 2001. 300–375 p.Google Scholar
  49. 49.
    Ansel HC, Popovich NG, Allen Jr LV. Farmacotécnica: formas farmacêuticas e sistema de liberação de fármacos. 6 ed. Premier; 2000. 568 p.Google Scholar
  50. 50.
    Abd E, Yousef SA, Pastore MN, Telaprolu K, Mohammed YH, Namjoshi S, et al. Skin models for the testing of transdermal drugs. Clin Pharmacol Adv Appl. 2016;8:163–76.Google Scholar
  51. 51.
    Florence AT, Attwood D. Physicochemical principles of pharmacy. 6th ed. London and Chicago: Pharmaceutical Press; 2016. 648 p.Google Scholar
  52. 52.
    Castro P, Madureira R, Sarmento B, Pintado M. Tissue-based in vitro and ex vivo models for buccal permeability studies. In: Concepts and models for drug permeability studies; 2016. p. 189–202.CrossRefGoogle Scholar
  53. 53.
    Cabrera-Pérez MÁ, Sanz MB, Sanjuan VM, González-Álvarez M, Álvarez IG. Importance and applications of cell- and tissue-based in vitro models for drug permeability screening in early stages of drug development. In: Concepts and models for drug permeability Studies. 2016. p. 3–29.Google Scholar
  54. 54.
    Machado A, Neves J das. Tissue-based in vitro and ex vivo models for dermal permeability studies. Concepts and Models for Drug Permeability Studies. 2016. 325–342 p.Google Scholar
  55. 55.
    Lakshmi CS, Badarinath AV. An updated review of dissolution apparatus for conventional and novel dosage forms. Int J Pharma Res Rev. 2013;2(27):42–53.Google Scholar
  56. 56.
    Crist GB. Dissolution equipment. In: Palmieri A, editor. Dissolution theory, methodology, and testing. Dissolution technologies, Inc.; 2007. p. 33–66.Google Scholar
  57. 57.
    Gohel MC, Mehta PR, Dave RK, Bariya NH. A more relevant dissolution method for evaluation of floating drug delivery system. Dissolution Technol. 2004;11(4):22–5.CrossRefGoogle Scholar
  58. 58.
    Bruschi ML. Mathematical models of drug release. In: Bruschi ML, editor. Strategies to modify the drug release from pharmaceutical systems; 2015. p. 63–86.Google Scholar
  59. 59.
    Shaikh HK, Kshirsagar R V, Patil SG. Mathematical models for drug release characterization: a review. World J Pharm Pharm Sci 2015;4(4):324–338.Google Scholar
  60. 60.
    Munday DL, Cox PJ. Compressed xanthan and karaya gum matrices: hydration, erosion and drug release mechanisms. Int J Pharm. 2000;203:179–92.CrossRefPubMedGoogle Scholar
  61. 61.
    Higuchi T. Mechanism of sustained-action medication. J Pharm Sci. 1963;15:1145–9.CrossRefGoogle Scholar
  62. 62.
    Llabot JM, Manzo RH, D a A. Drug release from carbomer:carbomer sodium salt matrices with potential use as mucoadhesive drug delivery system. Int J Pharm. 2004;276:59–66.CrossRefPubMedGoogle Scholar
  63. 63.
    Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.Google Scholar
  64. 64.
    Sayed E, Ruparelia K, Arshad MS, Chang M, Ahmad Z. Porous inorganic drug delivery systems—a review. AAPS PharmSciTech. 2017;18(5):1507–25.CrossRefPubMedGoogle Scholar
  65. 65.
    Zhang C, Niu J, Chong Y, Huang Y, Chu Y, Xie S. Porous microspheres as promising vehicles for the topical delivery of poorly soluble asiaticoside accelerate wound healing and inhibit scar formation in vitro & in vivo. Eur J Pharm Biopharm. 2016;109:1–13.CrossRefPubMedGoogle Scholar
  66. 66.
    Barrocas PMDC, Santos DFG, Ferreira DC, Coelho PMBDS, Oliveira RCS, Veiga FJDB. Pharmaceutical gastro-retentive systems | Sistemas farmacêuticos gastrorretentivos flutuantes. Rev Bras Ciencias Farm J Pharm Sci. 2007;43(3):325–34.CrossRefGoogle Scholar
  67. 67.
    Eberle VA, Schoelkopf J, Gane PAC, Alles R, Huwyler J, Puchkov M. Floating gastroretentive drug delivery systems: comparison of experimental and simulated dissolution profiles and floatation behavior. Eur J Pharm Sci. 2014;58(1):34–43.CrossRefPubMedGoogle Scholar
  68. 68.
    Dressman JB, Berardi RR, Dermentzoglou LC, Russell TL, Schmaltz SP, Barnett JL, Jarvenpaa KM Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res 1990;7:756–61.Google Scholar
  69. 69.
    Kawashima Y, Niwa T, Takeuchi H, Hino T, Ito Y. Control of prolonged drug release and compression properties of ibuprofen microsponges with acrylic polymer, eudragit RS, by changing their intraparticle porosity. Chem Pharm Bull. 1992;40(1):196–201.CrossRefPubMedGoogle Scholar
  70. 70.
    Philip A, Philip B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med J. 2010;25(2):70–8.CrossRefGoogle Scholar
  71. 71.
    Sharma N, Harikumar SL. Polymers for colon targeted drug delivery: a review. Int J Drug Dev Res 2013;5(1):21–31.Google Scholar
  72. 72.
    Ramasamy T, Kandhasami UDS, Ruttala H, Shanmugam S. Formulation and evaluation of xanthan gum based aceclofenac tablets for colon targeted drug delivery. Brazilian J Pharm Sci. 2011;47(2):299–311.CrossRefGoogle Scholar
  73. 73.
    Bruschi ML, Borghi-Pangoni FB, Junqueira MV, Ferreira SB de S. Nanostructured therapeutic systems with bioadhesive and thermoresponsive properties. In: Ficai D, Grumezescu AM, editors. Nanostructures for novel therapy synthesis, characterization and applications. Elsevier Inc.; 2017. p. 313–342.Google Scholar
  74. 74.
    Hoare TR, Kohane DS. Hydrogels in drug delivery. Polymer (Guildf). 2008;49:1993–2007.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Mariana Volpato Junqueira
    • 1
  • Marcos Luciano Bruschi
    • 1
    Email author
  1. 1.Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of PharmacyState University of MaringaMaringaBrazil

Personalised recommendations