Skip to main content
Log in

Contact Angle Measurements: an Alternative Approach Towards Understanding the Mechanism of Increased Drug Dissolution from Ethylcellulose Tablets Containing Surfactant and Exploring the Relationship Between Their Contact Angles and Dissolution Behaviors

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The addition of surfactant in tablet was a well-defined approach to improve drug dissolution rate. While the selected surfactant played a vital role in improving the wettability of tablet by medium, it was equally important to improve the dissolution rate by permeation effect due to production of pores or the reduced inter-particle adhesion. Furthermore, understanding the mechanism of dissolution rate increased was significant. In this work, contact angle measurement was taken up as an alternative approach for understanding the dissolution rate enhancement for tablet containing surfactant. Ethylcellulose, as a substrate, was used to prepare tablet. Four surfactants, sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), dodecyltrimethylammonium bromide (DTAB), and sodium lauryl sulfonate (SLS), were used. Berberine hydrochloride, metformin hydrochloride, and rutin were selected as model drugs. The contact angle of tablet in the absence and presence of surfactant was measured to explore the mechanism. The dissolution test was investigated to verify the mechanism and to establish a correlation with the contact angle. The result showed that the mechanism was the penetration effect rather than the wetting effect. The dissolution increased with a reduction in the contact angle. DTAB was found to obtain the highest level of dissolution enhancement and the lowest contact angle, while SDS, SDBS, and SLS were found to be the less effective in both dissolution enhancement and contact angle decrease. Therefore, contact angle was a good indicator for dissolution behavior besides exploring the mechanism of increased dissolution, which shows great potential in formula screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hörter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 2001;46:75–87.

    Article  PubMed  Google Scholar 

  2. Eldin SMB, Elkheshen SA, Ghorab MM. Improving tadalafil dissolution via surfactant-enriched tablets approach: statistical optimization, characterization, and pharmacokinetic assessment. J Drug Deliv Sci Tech. 2017;41:197–205.

    Article  Google Scholar 

  3. Serajuddin AT. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59(7):603–16.

    Article  CAS  PubMed  Google Scholar 

  4. Jung MS, Kim JS, Kim MS, Alhalaweh A, Cho W, Hwang SJ, et al. Bioavailability of indomethacin-saccharin cocrystals. J Pharm Pharmacol. 2010;62(11):1560–8.

    Article  CAS  PubMed  Google Scholar 

  5. Jain S, Patel N, Lin S. Solubility and dissolution enhancement strategies: current understanding and recent trends. Drug Dev Ind Pharm. 2015;41(6):875–87.

    Article  CAS  PubMed  Google Scholar 

  6. Tatavarti AS, Hoag SW. Microenvironmental pH modulation based release enhancement of a weakly basic drug from hydrophilic matrices. J Pharm Sci. 2006;95(7):1459–68.

    Article  CAS  PubMed  Google Scholar 

  7. Matsui R, Ueda O, Uchida S, Namiki N. Transdermal absorption of natural progesterone from alcoholic gel formulations with hydrophilic surfactant. Drug Dev Ind Pharm. 2015;41(6):1026–9.

    Article  CAS  PubMed  Google Scholar 

  8. Wong SM, Kellaway IW, Murdan S. Enhancement of the dissolution rate and oral absorption of a poorly water soluble drug by formation of surfactant-containing microparticles. Int J Pharm. 2006;317(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  9. Ng CL, Lee S-E, Lee J-K, Kim T-H, Jang WS, Choi J-S, et al. Solubilization and formulation of chrysosplenol C in solid dispersion with hydrophilic carriers. Int J Pharm. 2016;512(1):314–21.

    Article  CAS  PubMed  Google Scholar 

  10. Okonogi S, Puttipipatkhachorn S. Dissolution improvement of high drug-loaded solid dispersion. AAPS PharmSciTech. 2006;7:E52.

    Article  PubMed  Google Scholar 

  11. Basalious EB, Sebaie WE, Gazayerly OE. Application of pharmaceutical QbD for enhancement of the solubility and dissolution of a class II BCS drug using polymeric surfactants and crystallization inhibitors: development of controlled-release tablets. AAPS PharmSciTech. 2011;12(3):799–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sakeer K, Zein HA, Hassan I, Desai S, Nokhodchi A. Enhancement of dissolution of nystatin from buccoadhesive tablets containing various surfactants and a solid dispersion formulation. Arch Pharm Res. 2010;33(11):1771–9.

    Article  CAS  PubMed  Google Scholar 

  13. Park SH, Choi HK. The effects of surfactants on the dissolution profiles of poorly water-soluble acidic drugs. Int J Pharm. 2006;321(1–2):35–41.

    Article  CAS  PubMed  Google Scholar 

  14. Jamzad S, Fassihi R. Role of surfactant and pH on dissolution properties of fenofibrate and glipizide—a technical note. AAPS PharmSciTech. 2006;7:E17–22.

    Article  PubMed Central  Google Scholar 

  15. Hurwitz G, Guillen GR, Hoek EMV. Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements. J Membr Sci. 2010;349(1–2):349–57.

    Article  CAS  Google Scholar 

  16. Bajaj A, Rao MR, Pardeshi A, Sali D. Nanocrystallization by evaporative antisolvent technique for solubility and bioavailability enhancement of telmisartan. AAPS PharmSciTech. 2012;13(4):1331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tolia G, Li SK. Silicone adhesive matrix of verapamil hydrochloride to provide pH-independent sustained release. AAPS PharmSciTech. 2014;15(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  18. Chow KT, Chan LW, Heng PW. Characterization of spreadability of nonaqueous ethylcellulose gel matrices using dynamic contact angle. J Pharm Sci. 2008;97(8):3467–82.

    Article  CAS  PubMed  Google Scholar 

  19. Riedl Z, Szklenárik G, Zelkó R, Marton S, Rácz I. The effect of temperature and polymer concentration on dynamic surface tension and wetting ability of hydroxypropylmethylcellulose solutions. Drug Dev Ind Pharm. 2000;26:1321–3.

    Article  CAS  PubMed  Google Scholar 

  20. Peh KK, Wong CF, Yuen KH. Possible mechanism for drug retardation from glyceryl monostearate matrix system. Drug Dev Ind Pharm. 2000;26(4):447–50.

    Article  CAS  PubMed  Google Scholar 

  21. Verma S, Rudraraju VS. Wetting kinetics: an alternative approach towards understanding the enhanced dissolution rate for amorphous solid dispersion of a poorly soluble drug. AAPS PharmSciTech. 2015;16(5):1079–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dahlberg C, Fureby AM, Schuleit M. Surface composition and contact angle relationships for differently prepared solid dispersions. Eur J Pharm Biopharm. 2008;70(2):478–85.

    Article  CAS  PubMed  Google Scholar 

  23. Lu Y, Tang N, Lian R, Qi J, Wu W. Understanding the relationship between wettability and dissolution of solid dispersion. Int J Pharm. 2014;465:25–31.

    Article  CAS  PubMed  Google Scholar 

  24. Heng JYY, Bismarck A, Williams DR. Anisotropic surface chemistry of crystalline pharmaceutical solids. AAPS PharmSciTech. 2006;7:E12–20.

    Article  PubMed Central  Google Scholar 

  25. Owens DK, Wendt RC. Estimation of the surface free energy of polymers. J Appl Polym Sci. 1969;13:1741–7.

    Article  CAS  Google Scholar 

  26. Islam MS, Tong L, Falzon PJ. Influence of metal surface preparation on its surface profile, contact angle, surface energy and adhesion with glass fibre prepreg. Int J Adhes Adhes. 2014;51:32–41.

    Article  CAS  Google Scholar 

  27. Costa P, JMS L. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  CAS  PubMed  Google Scholar 

  28. Balakrishnan A, Rege BD, Amidon GL, Polli JE. Surfactant-mediated dissolution: contributions of solubility enhancement and relatively low micelle diffusivity. J Pharm Sci. 2004;93(8):2064–75.

    Article  CAS  PubMed  Google Scholar 

  29. Granero GE, Ramachandran C, Amidon GL. Dissolution and solubility behavior of fenofibrate in sodium lauryl sulfate solutions. Drug Dev Ind Pharm. 2005;31(9):917–22.

    Article  CAS  PubMed  Google Scholar 

  30. Efentakis M, Hmoud HA, Buckton G, Rajan Z. The influence of surfactants on drug release from a hydrophobic matrix. Int J Pharm. 1991;70:153–8.

    Article  CAS  Google Scholar 

  31. Li X, Banham D, Feng F, Forouzandeh F, Ye S, Kwok DY, et al. Wettability of colloid-imprinted carbons by contact angle kinetics and water vapor sorption measurements. Carbon. 2015;87:44–60.

    Article  CAS  Google Scholar 

  32. Buckton G, Efentakis M, Hmoud HA, Rajan Z. The influence of surfactants on drug release from acrylic matrices. Int J Pharm. 1991;74:169–74.

    Article  CAS  Google Scholar 

  33. Koennings S, Berie A, Tessmar J, Blunk T, Goepferich A. Influence of wettability and surface activity on release behavior of hydrophilic substances from lipid matrices. J Control Release. 2007;119(2):173–81.

    Article  CAS  PubMed  Google Scholar 

  34. Heng PWS, Wan LSC. Surfactant effect on the dissolution of sulfanilamide granules. J Pharm Sci. 1985;74:269–72.

    Article  CAS  PubMed  Google Scholar 

  35. Svitova T, Hill RM, Radke CJ. Adsorption layer structures and spreading behavior of aqueous non-ionic surfactants on graphite. Colloids Surf A. 2001;183:607–20.

    Article  Google Scholar 

  36. Alhmoud HA, Ibrahim NE, El-Hallous EI. Surfactants solubility, concentration and the other formulations effects on the drug release rate from a controlled-release matrix. Afr J Pharm Pharmacol. 2014;8(13):364.

    Google Scholar 

  37. Wells ML, Parrott EL. Models for release of chlorpheniramine and a noninteracting compound from an inert, heterogeneous matrix containing an anionic surfactant. Drug Dev Ind Pharm. 1992;18:265–84.

    Article  CAS  Google Scholar 

  38. Desai D, Wong B, Huang Y, Ye Q, Guo H, Huang M, et al. Wetting effects versus ion pairs diffusivity: interactions of anionic surfactants with highly soluble cationic drugs and its impact on tablet dissolution. J Pharm Sci. 2015;104(7):2255–65.

    Article  CAS  PubMed  Google Scholar 

  39. Shi SQ, Gardner DJ. Dynamic adhesive wettability of wood. Wood Fiber Sci. 2001;33:58–68.

    CAS  Google Scholar 

  40. Bolourtchian N, Javid FS, Dadashzadeh S. The effect of various surfactants on release behavior of procainamide HCl from ethylcellulose based matrices. Iran J Pharm Res. 2005;4:13–9.

    CAS  Google Scholar 

  41. Nokhodchi A, Hassan-Zadeh D, Monajjem-Zadeh F, Taghi-Zadeh N. Effect of various surfactants and their concentration on controlled release of captopril from polymeric matrices. Acta Pharma. 2008;58:151.

    Article  CAS  Google Scholar 

  42. Feely LC, Davis SS. Influence of surfactants on drug release from hydroxypropylmethylcellulose matrices. Int J Pharm. 1988;41(1):83–90.

    Article  CAS  Google Scholar 

  43. Nokhodchi A, Norouzi-Sani S, Siahi-Shadbad MR, Lotfipoor F, Saeedi M. The effect of various surfactants on the release rate of propranolol hydrochloride from hydroxypropylmethylcellulose (HPMC)-Eudragit matrices. Eur J Pharm Sci. 2002;54:349.

    CAS  Google Scholar 

  44. Shah SK, Chatterjee SK, Bhattarai A. The effect of methanol on the micellar properties of dodecyltrimethylammonium bromide (DTAB) in aqueous medium at different temperatures. J Surfactant Deterg. 2015;19(1):201–7.

    Article  Google Scholar 

  45. Bakshi MS, Kaur N, Mahajan RK. A comparative behavior of photophysical properties of Pluronic F127 and Triton X-100 with conventional zwitterionic and anionic surfactants. J Photoch Photobio A. 2006;183(1–2):146–53.

    Article  CAS  Google Scholar 

  46. Veiga MD, Ahsan F. Influence of surfactants over the dissolution of mequitazine. Drug Dev Ind Pharm. 2008;23:717–9.

    Article  Google Scholar 

  47. Razvi N, Siddiqui SA, Khan LG. The effect of surfactant on the dissolution rate of ibuprofen tablets. Intl Chern Pharm Med J. 2005:213–6.

  48. Kalin M, Polajnar M. The wetting of steel, DLC coatings, ceramics and polymers with oils and water: the importance and correlations of surface energy, surface tension, contact angle and spreading. Appl Surf Sci. 2014;293:97–108.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81473161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Hao, J., Yang, B. et al. Contact Angle Measurements: an Alternative Approach Towards Understanding the Mechanism of Increased Drug Dissolution from Ethylcellulose Tablets Containing Surfactant and Exploring the Relationship Between Their Contact Angles and Dissolution Behaviors. AAPS PharmSciTech 19, 1582–1591 (2018). https://doi.org/10.1208/s12249-018-0975-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-0975-6

Key Words

Navigation