Advertisement

AAPS PharmSciTech

, Volume 19, Issue 4, pp 1637–1646 | Cite as

Mucoadhesive Properties of Eudragit®RS100, Eudragit®S100, and Poly(ε-caprolactone) Nanocapsules: Influence of the Vehicle and the Mucosal Surface

  • Paula Dos Santos ChavesEmail author
  • Luiza Abrahão FrankEmail author
  • Alejandro Germán Frank
  • Adriana Raffin Pohlmann
  • Sílvia Stanisçuaski Guterres
  • Ruy Carlos Ruver Beck
Research Article
  • 304 Downloads

Abstract

The use of polymers as mucoadhesive materials has been explored in several drug delivery systems. It is well known that the resulting mucoadhesiveness not only depends on the polymers by themselves, but also on the way they are delivered and on the application target. However, little attention has been given to the combined effect of such characteristics. Therefore, the objective of this study is to analyze the mucoadhesion resulting from combined effects of nanocapsules produced with polymers of different ionic properties, Eudragit®RS100, Eudragit®S100, or poly(ε-caprolactone), when they are incorporated into different vehicles (suspension, hydrogel, and powder) and applied on different mucosal surfaces (mucin, porcine vaginal, and buccal mucosa). Mucoadhesion was measured by a tensile stress tester. Our findings show that polymeric self-assembling as nanocapsules improved the mucoadhesion of the polymers. Eudragit®RS100 nanocapsules have the best performance, independently of the vehicle and surface used. Regarding the vehicle, hydrogels showed higher adhesion when compared to suspensions and powders. When considering different types of surfaces, mucin presented a similar pattern like the animal mucosa, but it overestimated the mucoadhesiveness of all formulations. In conclusion, this study demonstrated that the best strategy to achieve high mucoadhesive formulations is by incorporating Eudragit®RS100 nanocapsules in hydrogels. Moreover, mucin is a suitable substrate to compare and screen different formulations but not as a conclusive estimation of the mucoadhesion values that can be achieved. These results are summarized in a decision tree that can help to understand different strategies of combination of these factors and the expected outcomes.

KEY WORDS

polymeric nanocapsules mucoadhesion mucin disc porcine mucosa vehicle 

Notes

Acknowledgements

The authors thank the following Brazilian agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) for financial support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71(3):505–18.  https://doi.org/10.1016/j.ejpb.2008.09.028.CrossRefPubMedGoogle Scholar
  2. 2.
    Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011;11(6):748–64.  https://doi.org/10.1002/mabi.201000388.CrossRefPubMedGoogle Scholar
  3. 3.
    Sosnik A, Das Neves J, Sarmento B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review. Prog Polym Sci. 2014;39(12):2030–75.  https://doi.org/10.1016/j.progpolymsci.2014.07.010.CrossRefGoogle Scholar
  4. 4.
    Goswami T, Jasti BR, Li X. Sublingual drug delivery. Crit Rev Ther Drug Carrier Syst. 2008;25(5):449–84.  https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v25.i5.20.CrossRefPubMedGoogle Scholar
  5. 5.
    Valenta C. The use of mucoadhesive polymers in vaginal delivery. Adv Drug Del Rev. 2005;57(11):1692–712.  https://doi.org/10.1016/j.addr.2005.07.004.CrossRefGoogle Scholar
  6. 6.
    Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Del Rev. 2005;57(11):1556–68.  https://doi.org/10.1016/j.addr.2005.07.001.CrossRefGoogle Scholar
  7. 7.
    Frank LA, Sandri G, D’Autilia F, Contri RV, Bonferoni MC, Caramella C, et al. Chitosan gel containing polymeric nanocapsules: a new formulation for vaginal drug delivery. Int J Nanomedicine. 2014;9:3151–61.  https://doi.org/10.2147/IJN.S62599.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Fonseca FN, Betti AH, Carvalho FC, Gremião MP, Dimer FA, Guterres SS, et al. Mucoadhesive amphiphilic methacrylic copolymer-functionalized poly (ε-caprolactone) nanocapsules for nose-to-brain delivery of olanzapine. J Biomed Nanotechnol. 2015;11(8):1472–81.  https://doi.org/10.1166/jbn.2014.2078.CrossRefPubMedGoogle Scholar
  9. 9.
    Chaves PS, Ourique AF, Frank LA, Pohlmann AR, Guterres SS, Beck RCR. Carvedilol-loaded nanocapsules: mucoadhesive properties and permeability across the sublingual mucosa. Eur J Pharm Biopharm. 2017;114:88–95.  https://doi.org/10.1016/j.ejpb.2017.01.007.CrossRefPubMedGoogle Scholar
  10. 10.
    Jäger E, Venturini CG, Poletto FS, Colomé LM, Pohlmann JP, Bernardi A, et al. Sustained release from lipid-core nanocapsules by varying the core viscosity and the particle surface area. J Biomed Nanotechnol. 2009;5(1):130–40.  https://doi.org/10.1166/jbn.2009.1004.CrossRefPubMedGoogle Scholar
  11. 11.
    Pohlmann AR, Fonseca FN, Paese K, Detoni CB, Coradini K, Beck RC, et al. Poly (ε-caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opin Drug Deliv. 2013;10(5):623–38.  https://doi.org/10.1517/17425247.2013.769956.CrossRefPubMedGoogle Scholar
  12. 12.
    Frank LA, Contri RV, Beck RC, Pohlmann AR, Guterres SS. Improving drug biological effects by encapsulation into polymeric nanocapsules. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(5):623–39.  https://doi.org/10.1002/wnan.1334.CrossRefPubMedGoogle Scholar
  13. 13.
    Pohlmann AR, Weiss V, Mertins O, da Silveira NP, Guterres SS. Spray-dried indomethacin-loaded polyester nanocapsules and nanospheres: development, stability evaluation and nanostructure models. Eur J Pharm Sci. 2002;16(4):305–12.  https://doi.org/10.1016/S0928-0987(02)00127-6.CrossRefGoogle Scholar
  14. 14.
    Schaffazick SR, Pohlmann AR, Mezzalira G, Guterres SS. Development of nanocapsule suspensions and nanocapsule spray-dried powders containing melatonin. J Braz Chem Soc. 2006;17(3):562–9.  https://doi.org/10.1590/S0103-50532006000300020.CrossRefGoogle Scholar
  15. 15.
    Hoffmeister CR, Durli TL, Schaffazick SR, Raffin RP, Bender EA, Beck RC, et al. Hydrogels containing redispersible spray-dried melatonin-loaded nanocapsules: a formulation for transdermal-controlled delivery. Nanoscale Res Lett. 2012;7(1):1–13.  https://doi.org/10.1186/1556-276X-7-251.CrossRefGoogle Scholar
  16. 16.
    Ourique AF, Melero A, da Silva CDB, Schaefer UF, Pohlmann AR, Guterres SS, et al. Improved photostability and reduced skin permeation of tretinoin: development of a semisolid nanomedicine. Eur J Pharm Biopharm. 2011;79(1):95–101.  https://doi.org/10.1016/j.ejpb.2011.03.008.CrossRefPubMedGoogle Scholar
  17. 17.
    Contri RV, Katzer T, Pohlmann AR, Guterres SS. Chitosan hydrogel containing capsaicinoids-loaded nanocapsules: an innovative formulation for topical delivery. Soft Mater. 2010;8(4):370–85.  https://doi.org/10.1080/1539445X.2010.525161.CrossRefGoogle Scholar
  18. 18.
    Contri RV, Katzer T, Ourique AF, da Silva ALM, Beck RC, Pohlmann AR, et al. Combined effect of polymeric nanocapsules and chitosan hydrogel on the increase of capsaicinoids adhesion to the skin surface. J Biomed Nanotechnol. 2014;10(5):820–30.  https://doi.org/10.1166/jbn.2014.1752.CrossRefPubMedGoogle Scholar
  19. 19.
    Contri RV, Soares RM, Pohlmann AR, Guterres SS. Structural analysis of chitosan hydrogels containing polymeric nanocapsules. Mater Sci Eng C. 2014;42:234–42.  https://doi.org/10.1016/j.msec.2014.05.001.CrossRefGoogle Scholar
  20. 20.
    Santos SS, Lorenzoni A, Ferreira LM, Mattiazzi J, Adams AI, Denardi LB, et al. Clotrimazole-loaded Eudragit® RS100 nanocapsules: preparation, characterization and in vitro evaluation of antifungal activity against Candida species. Mater Sci Eng C. 2013;33(3):1389–94.  https://doi.org/10.1016/j.msec.2012.12.040.CrossRefGoogle Scholar
  21. 21.
    Contri RV, Fiel LA, Alnasif N, Pohlmann AR, Guterres SS, Schäfer-Korting M. Skin penetration and dermal tolerability of acrylic nanocapsules: influence of the surface charge and a chitosan gel used as vehicle. Int J Pharm. 2016;507(1):12–20.  https://doi.org/10.1016/j.ijpharm.2016.03.046.CrossRefPubMedGoogle Scholar
  22. 22.
    Katzer T, Chaves P, Bernardi A, Pohlmann A, Guterres SS, Ruver Beck RC. Prednisolone-loaded nanocapsules as ocular drug delivery system: development, in vitro drug release and eye toxicity. J Microencapsul. 2014;31(6):519–28.  https://doi.org/10.3109/02652048.2013.879930.CrossRefPubMedGoogle Scholar
  23. 23.
    Schaffazick SR, Pohlmann AR, De Cordova CAS, Creczynski-Pasa TB, Guterres SS. Protective properties of melatonin-loaded nanoparticles against lipid peroxidation. Int J Pharm. 2005;289(1):209–13.  https://doi.org/10.1016/j.ijpharm.2004.11.003.CrossRefPubMedGoogle Scholar
  24. 24.
    Figueiró F, Bernardi A, Frozza RL, Terroso T, Zanotto-Filho A, Jandrey EH, et al. Resveratrol-loaded lipid-core nanocapsules treatment reduces in vitro and in vivo glioma growth. J Biomed Nanotechnol. 2013;9(3):516–26.  https://doi.org/10.1166/jbn.2013.1547.CrossRefPubMedGoogle Scholar
  25. 25.
    Da Silva ALM, Contri RV, Jornada DS, Pohlmann AR, Guterres SS. Vitamin K1–loaded lipid-core nanocapsules: physicochemical characterization and in vitro skin permeation. Skin Res Technol. 2013;19(1):e223–30.  https://doi.org/10.1111/j.1600-0846.2012.00631.x.CrossRefPubMedGoogle Scholar
  26. 26.
    Coradini K, Lima FO, Oliveira CM, Chaves PS, Athayde ML, Carvalho LM, et al. Co-encapsulation of resveratrol and curcumin in lipid-core nanocapsules improves their in vitro antioxidant effects. Eur J Pharma Biopharm. 2014;88(1):178–85.  https://doi.org/10.1016/j.ejpb.2014.04.009.CrossRefGoogle Scholar
  27. 27.
    Savian AL, Rodrigues D, Weber J, Ribeiro RF, Motta MH, Schaffazick SR, et al. Dithranol-loaded lipid-core nanocapsules improve the photostability and reduce the in vitro irritation potential of this drug. Mater Sci Eng C. 2015;46:69–76.  https://doi.org/10.1016/j.msec.2014.10.011.CrossRefGoogle Scholar
  28. 28.
    Trapani A, Laquintana V, Denora N, Lopedota A, Cutrignelli A, Franco M, et al. Eudragit RS 100 microparticles containing 2-hydroxypropyl-β cyclodextrin and glutathione: physicochemical characterization, drug release and transport studies. Eur J Pharm Sci. 2007;30(1):64–74.  https://doi.org/10.1016/j.ejps.2006.10.003.CrossRefPubMedGoogle Scholar
  29. 29.
    Abdallah MH, Sammour OA, El-ghamry HA, El-nahas HM, Barakat W. Development and characterization of controlled release ketoprofen microspheres. J Appl Pharm Sci. 2012;2(3):60–7.  https://doi.org/10.7324/JAPS.2012.2310.Google Scholar
  30. 30.
    Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. London: Pharmaceutical press; 2009.Google Scholar
  31. 31.
    Leitner VM, Walker GF, Bernkop-Schnürch A. Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins. Eur J Pharm Biopharm. 2003;56(2):207–14.  https://doi.org/10.1016/S0939-6411(03)00061-4.CrossRefPubMedGoogle Scholar
  32. 32.
    Bruschi ML, Jones DS, Panzeri H, Gremião MPD, Freitas O, Lara EHG. Semisolid systems containing propolis for the treatment of periodontal disease: in vitro release kinetics, syringeability, rheological, textural, and mucoadhesive properties. J Pharm Sci. 2007;96(8):2074–89.  https://doi.org/10.1002/jps.20843.CrossRefPubMedGoogle Scholar
  33. 33.
    Sriamornsak P, Wattanakorn N, Takeuchi H. Study on the mucoadhesion mechanism of pectin by atomic force microscopy and mucin-particle method. Carbohydr Polym. 2010;79(1):54–9.  https://doi.org/10.1016/j.carbpol.2009.07.018.CrossRefGoogle Scholar
  34. 34.
    Teubl BJ, Absenger M, Fröhlich E, Leitinger G, Zimmer A, Roblegg E. The oral cavity as a biological barrier system: design of an advanced buccal in vitro permeability model. Eur J Pharm Biopharm. 2013;84(2):386–93.  https://doi.org/10.1016/j.ejpb.2012.10.021.CrossRefPubMedGoogle Scholar
  35. 35.
    Bianchin MD, Külkamp-Guerreiro IC, de Oliveira CP, Contri RV, Guterres SS, Pohlmann AR. Radar charts based on particle sizing as an approach to establish the fingerprints of polymeric nanoparticles in aqueous formulations. J Drug Del Sci Technol. 2015;30:180–9.  https://doi.org/10.1016/j.jddst.2015.10.015.CrossRefGoogle Scholar
  36. 36.
    Ribeiro RF, Motta MH, Härter APG, Flores FC, Beck RCR, Schaffazick SR, et al. Spray-dried powders improve the controlled release of antifungal tioconazole-loaded polymeric nanocapsules compared to with lyophilized products. Mater Sci Eng C. 2016;59:875–84.  https://doi.org/10.1016/j.msec.2015.10.035.CrossRefGoogle Scholar
  37. 37.
    Frank LA, Chaves PS, Contri RV, D’amore C, Frank AG, RCR B, et al. The use of chitosan as cationic coating or gel vehicle for polymeric nanocapsules: increasing penetration and adhesion of imiquimod in vaginal tissue. E J Pharm Biopharm. 2017;114:202–12.  https://doi.org/10.1016/j.ejpb.2017.01.021.CrossRefGoogle Scholar
  38. 38.
    Vànic E, Basnet NS. Nanopharmaceuticals for improved topical vaginal therapy: can they deliver? Eur J Pharm Sci. 2013;50(1):29–41.  https://doi.org/10.1016/j.ejps.2013.04.035.CrossRefPubMedGoogle Scholar
  39. 39.
    Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G. Eudragit RS100® nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci. 2002;16(1):53–61.  https://doi.org/10.1016/S0928-0987(02)00057-X.CrossRefPubMedGoogle Scholar
  40. 40.
    Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery—a promising option for orally less efficient drugs. J Control Release. 2006;114(1):15–40.  https://doi.org/10.1016/j.jconrel.2006.04.012.CrossRefPubMedGoogle Scholar
  41. 41.
    Caramella CM, Rossi S, Ferrari F, Bonferoni MC, Sandri G. Mucoadhesive and thermogelling systems for vaginal drug delivery. Adv Drug Del Rev. 2015;92:39–52.  https://doi.org/10.1016/j.addr.2015.02.001.CrossRefGoogle Scholar
  42. 42.
    Beck RCR, Ourique AF, Guterres SS, Pohlmann AR. Spray-dried polymeric nanoparticles for pharmaceutics: a review of patents. Recent Pat Drug Deliv Form. 2012;6(3):195–208.  https://doi.org/10.2174/187221112802652651.CrossRefGoogle Scholar
  43. 43.
    Das Neves J, Nunes R, Machado A, Sarmento B. Polymer-based nanocarriers for vaginal drug delivery. Adv Drug Del Rev. 2015;92:53–70.  https://doi.org/10.1016/j.addr.2014.12.004.CrossRefGoogle Scholar
  44. 44.
    Bonferoni MC, Sandri G, Rossi S, Ferrari F, Gibin S, Caramella C. Chitosan citrate as multifunctional polymer for vaginal delivery. Evaluation of penetration enhancement and peptidade inhibition properties. Eur J Pharm Sci. 2008;33(2):166–76.  https://doi.org/10.1016/j.ejps.2007.11.004.CrossRefPubMedGoogle Scholar
  45. 45.
    Sandri S, Rossi S, Ferrari F, Bonferoni MC, Muzzarelli C, Caramella C. Assessment of chitosan derivates as bucal and vaginal penetration enhancers. Eur J Pharm Sci. 2004;21:351–9.  https://doi.org/10.1016/j.ejps.2003.10.028.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Paula Dos Santos Chaves
    • 1
    Email author
  • Luiza Abrahão Frank
    • 1
    Email author
  • Alejandro Germán Frank
    • 2
  • Adriana Raffin Pohlmann
    • 1
    • 3
  • Sílvia Stanisçuaski Guterres
    • 1
  • Ruy Carlos Ruver Beck
    • 1
  1. 1.Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Núcleo de Engenharia Organizacional (NEO), Departamento de Engenharia de Produção e TransportesUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  3. 3.Departamento de Química Orgânica, Instituto de QuímicaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations